Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0fsummpt Structured version   Visualization version   GIF version

Theorem sge0fsummpt 43430
Description: The arbitrary sum of a finite set of nonnegative extended real numbers is equal to the sum of those numbers, when none of them is +∞ (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0fsummpt.a (𝜑𝐴 ∈ Fin)
sge0fsummpt.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
Assertion
Ref Expression
sge0fsummpt (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem sge0fsummpt
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 sge0fsummpt.a . . 3 (𝜑𝐴 ∈ Fin)
2 sge0fsummpt.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
3 eqid 2758 . . . 4 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
42, 3fmptd 6875 . . 3 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,)+∞))
51, 4sge0fsum 43427 . 2 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = Σ𝑗𝐴 ((𝑘𝐴𝐵)‘𝑗))
6 fveq2 6663 . . . 4 (𝑗 = 𝑘 → ((𝑘𝐴𝐵)‘𝑗) = ((𝑘𝐴𝐵)‘𝑘))
7 nfcv 2919 . . . 4 𝑘𝐴
8 nfcv 2919 . . . 4 𝑗𝐴
9 nfmpt1 5134 . . . . 5 𝑘(𝑘𝐴𝐵)
10 nfcv 2919 . . . . 5 𝑘𝑗
119, 10nffv 6673 . . . 4 𝑘((𝑘𝐴𝐵)‘𝑗)
12 nfcv 2919 . . . 4 𝑗((𝑘𝐴𝐵)‘𝑘)
136, 7, 8, 11, 12cbvsum 15113 . . 3 Σ𝑗𝐴 ((𝑘𝐴𝐵)‘𝑗) = Σ𝑘𝐴 ((𝑘𝐴𝐵)‘𝑘)
1413a1i 11 . 2 (𝜑 → Σ𝑗𝐴 ((𝑘𝐴𝐵)‘𝑗) = Σ𝑘𝐴 ((𝑘𝐴𝐵)‘𝑘))
15 simpr 488 . . . 4 ((𝜑𝑘𝐴) → 𝑘𝐴)
163fvmpt2 6775 . . . 4 ((𝑘𝐴𝐵 ∈ (0[,)+∞)) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
1715, 2, 16syl2anc 587 . . 3 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
1817sumeq2dv 15121 . 2 (𝜑 → Σ𝑘𝐴 ((𝑘𝐴𝐵)‘𝑘) = Σ𝑘𝐴 𝐵)
195, 14, 183eqtrd 2797 1 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  cmpt 5116  cfv 6340  (class class class)co 7156  Fincfn 8540  0cc0 10588  +∞cpnf 10723  [,)cico 12794  Σcsu 15103  Σ^csumge0 43402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-inf2 9150  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-sup 8952  df-oi 9020  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-n0 11948  df-z 12034  df-uz 12296  df-rp 12444  df-ico 12798  df-icc 12799  df-fz 12953  df-fzo 13096  df-seq 13432  df-exp 13493  df-hash 13754  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-clim 14906  df-sum 15104  df-sumge0 43403
This theorem is referenced by:  sge0pr  43434  sge0iunmptlemfi  43453  sge0iunmptlemre  43455  sge0rpcpnf  43461  sge0isum  43467  sge0xaddlem2  43474  sge0seq  43486  meaiuninclem  43520  omeiunltfirp  43559  hoidmvlelem2  43636
  Copyright terms: Public domain W3C validator