Step | Hyp | Ref
| Expression |
1 | | csbeq1a 3935 |
. . . 4
⊢ (𝑘 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑘⦌𝐵) |
2 | | nfcv 2908 |
. . . 4
⊢
Ⅎ𝑖𝐵 |
3 | | nfcsb1v 3946 |
. . . 4
⊢
Ⅎ𝑘⦋𝑖 / 𝑘⦌𝐵 |
4 | 1, 2, 3 | cbvsum 15743 |
. . 3
⊢
Σ𝑘 ∈
𝐴 𝐵 = Σ𝑖 ∈ 𝐴 ⦋𝑖 / 𝑘⦌𝐵 |
5 | 4 | a1i 11 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑖 ∈ 𝐴 ⦋𝑖 / 𝑘⦌𝐵) |
6 | | nfv 1913 |
. . . . 5
⊢
Ⅎ𝑘 𝑖 = ⦋𝑗 / 𝑛⦌𝐺 |
7 | | nfcv 2908 |
. . . . . 6
⊢
Ⅎ𝑘⦋𝑗 / 𝑛⦌𝐷 |
8 | 3, 7 | nfeq 2922 |
. . . . 5
⊢
Ⅎ𝑘⦋𝑖 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑛⦌𝐷 |
9 | 6, 8 | nfim 1895 |
. . . 4
⊢
Ⅎ𝑘(𝑖 = ⦋𝑗 / 𝑛⦌𝐺 → ⦋𝑖 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑛⦌𝐷) |
10 | | eqeq1 2744 |
. . . . 5
⊢ (𝑘 = 𝑖 → (𝑘 = ⦋𝑗 / 𝑛⦌𝐺 ↔ 𝑖 = ⦋𝑗 / 𝑛⦌𝐺)) |
11 | 1 | eqeq1d 2742 |
. . . . 5
⊢ (𝑘 = 𝑖 → (𝐵 = ⦋𝑗 / 𝑛⦌𝐷 ↔ ⦋𝑖 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑛⦌𝐷)) |
12 | 10, 11 | imbi12d 344 |
. . . 4
⊢ (𝑘 = 𝑖 → ((𝑘 = ⦋𝑗 / 𝑛⦌𝐺 → 𝐵 = ⦋𝑗 / 𝑛⦌𝐷) ↔ (𝑖 = ⦋𝑗 / 𝑛⦌𝐺 → ⦋𝑖 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑛⦌𝐷))) |
13 | | nfcv 2908 |
. . . . . . 7
⊢
Ⅎ𝑛𝑘 |
14 | | nfcsb1v 3946 |
. . . . . . 7
⊢
Ⅎ𝑛⦋𝑗 / 𝑛⦌𝐺 |
15 | 13, 14 | nfeq 2922 |
. . . . . 6
⊢
Ⅎ𝑛 𝑘 = ⦋𝑗 / 𝑛⦌𝐺 |
16 | | nfcv 2908 |
. . . . . . 7
⊢
Ⅎ𝑛𝐵 |
17 | | nfcsb1v 3946 |
. . . . . . 7
⊢
Ⅎ𝑛⦋𝑗 / 𝑛⦌𝐷 |
18 | 16, 17 | nfeq 2922 |
. . . . . 6
⊢
Ⅎ𝑛 𝐵 = ⦋𝑗 / 𝑛⦌𝐷 |
19 | 15, 18 | nfim 1895 |
. . . . 5
⊢
Ⅎ𝑛(𝑘 = ⦋𝑗 / 𝑛⦌𝐺 → 𝐵 = ⦋𝑗 / 𝑛⦌𝐷) |
20 | | csbeq1a 3935 |
. . . . . . 7
⊢ (𝑛 = 𝑗 → 𝐺 = ⦋𝑗 / 𝑛⦌𝐺) |
21 | 20 | eqeq2d 2751 |
. . . . . 6
⊢ (𝑛 = 𝑗 → (𝑘 = 𝐺 ↔ 𝑘 = ⦋𝑗 / 𝑛⦌𝐺)) |
22 | | csbeq1a 3935 |
. . . . . . 7
⊢ (𝑛 = 𝑗 → 𝐷 = ⦋𝑗 / 𝑛⦌𝐷) |
23 | 22 | eqeq2d 2751 |
. . . . . 6
⊢ (𝑛 = 𝑗 → (𝐵 = 𝐷 ↔ 𝐵 = ⦋𝑗 / 𝑛⦌𝐷)) |
24 | 21, 23 | imbi12d 344 |
. . . . 5
⊢ (𝑛 = 𝑗 → ((𝑘 = 𝐺 → 𝐵 = 𝐷) ↔ (𝑘 = ⦋𝑗 / 𝑛⦌𝐺 → 𝐵 = ⦋𝑗 / 𝑛⦌𝐷))) |
25 | | fsumf1of.3 |
. . . . 5
⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) |
26 | 19, 24, 25 | chvarfv 2241 |
. . . 4
⊢ (𝑘 = ⦋𝑗 / 𝑛⦌𝐺 → 𝐵 = ⦋𝑗 / 𝑛⦌𝐷) |
27 | 9, 12, 26 | chvarfv 2241 |
. . 3
⊢ (𝑖 = ⦋𝑗 / 𝑛⦌𝐺 → ⦋𝑖 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑛⦌𝐷) |
28 | | fsumf1of.4 |
. . 3
⊢ (𝜑 → 𝐶 ∈ Fin) |
29 | | fsumf1of.5 |
. . 3
⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) |
30 | | fsumf1of.2 |
. . . . . 6
⊢
Ⅎ𝑛𝜑 |
31 | | nfv 1913 |
. . . . . 6
⊢
Ⅎ𝑛 𝑗 ∈ 𝐶 |
32 | 30, 31 | nfan 1898 |
. . . . 5
⊢
Ⅎ𝑛(𝜑 ∧ 𝑗 ∈ 𝐶) |
33 | | nfcv 2908 |
. . . . . 6
⊢
Ⅎ𝑛(𝐹‘𝑗) |
34 | 33, 14 | nfeq 2922 |
. . . . 5
⊢
Ⅎ𝑛(𝐹‘𝑗) = ⦋𝑗 / 𝑛⦌𝐺 |
35 | 32, 34 | nfim 1895 |
. . . 4
⊢
Ⅎ𝑛((𝜑 ∧ 𝑗 ∈ 𝐶) → (𝐹‘𝑗) = ⦋𝑗 / 𝑛⦌𝐺) |
36 | | eleq1w 2827 |
. . . . . 6
⊢ (𝑛 = 𝑗 → (𝑛 ∈ 𝐶 ↔ 𝑗 ∈ 𝐶)) |
37 | 36 | anbi2d 629 |
. . . . 5
⊢ (𝑛 = 𝑗 → ((𝜑 ∧ 𝑛 ∈ 𝐶) ↔ (𝜑 ∧ 𝑗 ∈ 𝐶))) |
38 | | fveq2 6920 |
. . . . . 6
⊢ (𝑛 = 𝑗 → (𝐹‘𝑛) = (𝐹‘𝑗)) |
39 | 38, 20 | eqeq12d 2756 |
. . . . 5
⊢ (𝑛 = 𝑗 → ((𝐹‘𝑛) = 𝐺 ↔ (𝐹‘𝑗) = ⦋𝑗 / 𝑛⦌𝐺)) |
40 | 37, 39 | imbi12d 344 |
. . . 4
⊢ (𝑛 = 𝑗 → (((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐶) → (𝐹‘𝑗) = ⦋𝑗 / 𝑛⦌𝐺))) |
41 | | fsumf1of.6 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) |
42 | 35, 40, 41 | chvarfv 2241 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐶) → (𝐹‘𝑗) = ⦋𝑗 / 𝑛⦌𝐺) |
43 | | fsumf1of.1 |
. . . . . 6
⊢
Ⅎ𝑘𝜑 |
44 | | nfv 1913 |
. . . . . 6
⊢
Ⅎ𝑘 𝑖 ∈ 𝐴 |
45 | 43, 44 | nfan 1898 |
. . . . 5
⊢
Ⅎ𝑘(𝜑 ∧ 𝑖 ∈ 𝐴) |
46 | 3 | nfel1 2925 |
. . . . 5
⊢
Ⅎ𝑘⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ |
47 | 45, 46 | nfim 1895 |
. . . 4
⊢
Ⅎ𝑘((𝜑 ∧ 𝑖 ∈ 𝐴) → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ) |
48 | | eleq1w 2827 |
. . . . . 6
⊢ (𝑘 = 𝑖 → (𝑘 ∈ 𝐴 ↔ 𝑖 ∈ 𝐴)) |
49 | 48 | anbi2d 629 |
. . . . 5
⊢ (𝑘 = 𝑖 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑖 ∈ 𝐴))) |
50 | 1 | eleq1d 2829 |
. . . . 5
⊢ (𝑘 = 𝑖 → (𝐵 ∈ ℂ ↔ ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ)) |
51 | 49, 50 | imbi12d 344 |
. . . 4
⊢ (𝑘 = 𝑖 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ))) |
52 | | fsumf1of.7 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
53 | 47, 51, 52 | chvarfv 2241 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ) |
54 | 27, 28, 29, 42, 53 | fsumf1o 15771 |
. 2
⊢ (𝜑 → Σ𝑖 ∈ 𝐴 ⦋𝑖 / 𝑘⦌𝐵 = Σ𝑗 ∈ 𝐶 ⦋𝑗 / 𝑛⦌𝐷) |
55 | | nfcv 2908 |
. . . . 5
⊢
Ⅎ𝑗𝐷 |
56 | 22, 55, 17 | cbvsum 15743 |
. . . 4
⊢
Σ𝑛 ∈
𝐶 𝐷 = Σ𝑗 ∈ 𝐶 ⦋𝑗 / 𝑛⦌𝐷 |
57 | 56 | eqcomi 2749 |
. . 3
⊢
Σ𝑗 ∈
𝐶 ⦋𝑗 / 𝑛⦌𝐷 = Σ𝑛 ∈ 𝐶 𝐷 |
58 | 57 | a1i 11 |
. 2
⊢ (𝜑 → Σ𝑗 ∈ 𝐶 ⦋𝑗 / 𝑛⦌𝐷 = Σ𝑛 ∈ 𝐶 𝐷) |
59 | 5, 54, 58 | 3eqtrd 2784 |
1
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑛 ∈ 𝐶 𝐷) |