Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumf1of Structured version   Visualization version   GIF version

Theorem fsumf1of 42790
Description: Re-index a finite sum using a bijection. Same as fsumf1o 15287, but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
fsumf1of.1 𝑘𝜑
fsumf1of.2 𝑛𝜑
fsumf1of.3 (𝑘 = 𝐺𝐵 = 𝐷)
fsumf1of.4 (𝜑𝐶 ∈ Fin)
fsumf1of.5 (𝜑𝐹:𝐶1-1-onto𝐴)
fsumf1of.6 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
fsumf1of.7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsumf1of (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑛   𝐶,𝑛   𝐷,𝑘   𝑛,𝐹   𝑘,𝐺   𝑘,𝑛
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑛)   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑛)   𝐹(𝑘)   𝐺(𝑛)

Proof of Theorem fsumf1of
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3825 . . . 4 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑘𝐵)
2 nfcv 2904 . . . 4 𝑖𝐴
3 nfcv 2904 . . . 4 𝑘𝐴
4 nfcv 2904 . . . 4 𝑖𝐵
5 nfcsb1v 3836 . . . 4 𝑘𝑖 / 𝑘𝐵
61, 2, 3, 4, 5cbvsum 15259 . . 3 Σ𝑘𝐴 𝐵 = Σ𝑖𝐴 𝑖 / 𝑘𝐵
76a1i 11 . 2 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑖𝐴 𝑖 / 𝑘𝐵)
8 nfv 1922 . . . . 5 𝑘 𝑖 = 𝑗 / 𝑛𝐺
9 nfcv 2904 . . . . . 6 𝑘𝑗 / 𝑛𝐷
105, 9nfeq 2917 . . . . 5 𝑘𝑖 / 𝑘𝐵 = 𝑗 / 𝑛𝐷
118, 10nfim 1904 . . . 4 𝑘(𝑖 = 𝑗 / 𝑛𝐺𝑖 / 𝑘𝐵 = 𝑗 / 𝑛𝐷)
12 eqeq1 2741 . . . . 5 (𝑘 = 𝑖 → (𝑘 = 𝑗 / 𝑛𝐺𝑖 = 𝑗 / 𝑛𝐺))
131eqeq1d 2739 . . . . 5 (𝑘 = 𝑖 → (𝐵 = 𝑗 / 𝑛𝐷𝑖 / 𝑘𝐵 = 𝑗 / 𝑛𝐷))
1412, 13imbi12d 348 . . . 4 (𝑘 = 𝑖 → ((𝑘 = 𝑗 / 𝑛𝐺𝐵 = 𝑗 / 𝑛𝐷) ↔ (𝑖 = 𝑗 / 𝑛𝐺𝑖 / 𝑘𝐵 = 𝑗 / 𝑛𝐷)))
15 nfcv 2904 . . . . . . 7 𝑛𝑘
16 nfcsb1v 3836 . . . . . . 7 𝑛𝑗 / 𝑛𝐺
1715, 16nfeq 2917 . . . . . 6 𝑛 𝑘 = 𝑗 / 𝑛𝐺
18 nfcv 2904 . . . . . . 7 𝑛𝐵
19 nfcsb1v 3836 . . . . . . 7 𝑛𝑗 / 𝑛𝐷
2018, 19nfeq 2917 . . . . . 6 𝑛 𝐵 = 𝑗 / 𝑛𝐷
2117, 20nfim 1904 . . . . 5 𝑛(𝑘 = 𝑗 / 𝑛𝐺𝐵 = 𝑗 / 𝑛𝐷)
22 csbeq1a 3825 . . . . . . 7 (𝑛 = 𝑗𝐺 = 𝑗 / 𝑛𝐺)
2322eqeq2d 2748 . . . . . 6 (𝑛 = 𝑗 → (𝑘 = 𝐺𝑘 = 𝑗 / 𝑛𝐺))
24 csbeq1a 3825 . . . . . . 7 (𝑛 = 𝑗𝐷 = 𝑗 / 𝑛𝐷)
2524eqeq2d 2748 . . . . . 6 (𝑛 = 𝑗 → (𝐵 = 𝐷𝐵 = 𝑗 / 𝑛𝐷))
2623, 25imbi12d 348 . . . . 5 (𝑛 = 𝑗 → ((𝑘 = 𝐺𝐵 = 𝐷) ↔ (𝑘 = 𝑗 / 𝑛𝐺𝐵 = 𝑗 / 𝑛𝐷)))
27 fsumf1of.3 . . . . 5 (𝑘 = 𝐺𝐵 = 𝐷)
2821, 26, 27chvarfv 2238 . . . 4 (𝑘 = 𝑗 / 𝑛𝐺𝐵 = 𝑗 / 𝑛𝐷)
2911, 14, 28chvarfv 2238 . . 3 (𝑖 = 𝑗 / 𝑛𝐺𝑖 / 𝑘𝐵 = 𝑗 / 𝑛𝐷)
30 fsumf1of.4 . . 3 (𝜑𝐶 ∈ Fin)
31 fsumf1of.5 . . 3 (𝜑𝐹:𝐶1-1-onto𝐴)
32 fsumf1of.2 . . . . . 6 𝑛𝜑
33 nfv 1922 . . . . . 6 𝑛 𝑗𝐶
3432, 33nfan 1907 . . . . 5 𝑛(𝜑𝑗𝐶)
35 nfcv 2904 . . . . . 6 𝑛(𝐹𝑗)
3635, 16nfeq 2917 . . . . 5 𝑛(𝐹𝑗) = 𝑗 / 𝑛𝐺
3734, 36nfim 1904 . . . 4 𝑛((𝜑𝑗𝐶) → (𝐹𝑗) = 𝑗 / 𝑛𝐺)
38 eleq1w 2820 . . . . . 6 (𝑛 = 𝑗 → (𝑛𝐶𝑗𝐶))
3938anbi2d 632 . . . . 5 (𝑛 = 𝑗 → ((𝜑𝑛𝐶) ↔ (𝜑𝑗𝐶)))
40 fveq2 6717 . . . . . 6 (𝑛 = 𝑗 → (𝐹𝑛) = (𝐹𝑗))
4140, 22eqeq12d 2753 . . . . 5 (𝑛 = 𝑗 → ((𝐹𝑛) = 𝐺 ↔ (𝐹𝑗) = 𝑗 / 𝑛𝐺))
4239, 41imbi12d 348 . . . 4 (𝑛 = 𝑗 → (((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺) ↔ ((𝜑𝑗𝐶) → (𝐹𝑗) = 𝑗 / 𝑛𝐺)))
43 fsumf1of.6 . . . 4 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
4437, 42, 43chvarfv 2238 . . 3 ((𝜑𝑗𝐶) → (𝐹𝑗) = 𝑗 / 𝑛𝐺)
45 fsumf1of.1 . . . . . 6 𝑘𝜑
46 nfv 1922 . . . . . 6 𝑘 𝑖𝐴
4745, 46nfan 1907 . . . . 5 𝑘(𝜑𝑖𝐴)
485nfel1 2920 . . . . 5 𝑘𝑖 / 𝑘𝐵 ∈ ℂ
4947, 48nfim 1904 . . . 4 𝑘((𝜑𝑖𝐴) → 𝑖 / 𝑘𝐵 ∈ ℂ)
50 eleq1w 2820 . . . . . 6 (𝑘 = 𝑖 → (𝑘𝐴𝑖𝐴))
5150anbi2d 632 . . . . 5 (𝑘 = 𝑖 → ((𝜑𝑘𝐴) ↔ (𝜑𝑖𝐴)))
521eleq1d 2822 . . . . 5 (𝑘 = 𝑖 → (𝐵 ∈ ℂ ↔ 𝑖 / 𝑘𝐵 ∈ ℂ))
5351, 52imbi12d 348 . . . 4 (𝑘 = 𝑖 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑖𝐴) → 𝑖 / 𝑘𝐵 ∈ ℂ)))
54 fsumf1of.7 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
5549, 53, 54chvarfv 2238 . . 3 ((𝜑𝑖𝐴) → 𝑖 / 𝑘𝐵 ∈ ℂ)
5629, 30, 31, 44, 55fsumf1o 15287 . 2 (𝜑 → Σ𝑖𝐴 𝑖 / 𝑘𝐵 = Σ𝑗𝐶 𝑗 / 𝑛𝐷)
57 nfcv 2904 . . . . 5 𝑗𝐶
58 nfcv 2904 . . . . 5 𝑛𝐶
59 nfcv 2904 . . . . 5 𝑗𝐷
6024, 57, 58, 59, 19cbvsum 15259 . . . 4 Σ𝑛𝐶 𝐷 = Σ𝑗𝐶 𝑗 / 𝑛𝐷
6160eqcomi 2746 . . 3 Σ𝑗𝐶 𝑗 / 𝑛𝐷 = Σ𝑛𝐶 𝐷
6261a1i 11 . 2 (𝜑 → Σ𝑗𝐶 𝑗 / 𝑛𝐷 = Σ𝑛𝐶 𝐷)
637, 56, 623eqtrd 2781 1 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wnf 1791  wcel 2110  csb 3811  1-1-ontowf1o 6379  cfv 6380  Fincfn 8626  cc 10727  Σcsu 15249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-fz 13096  df-fzo 13239  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-sum 15250
This theorem is referenced by:  sge0f1o  43595
  Copyright terms: Public domain W3C validator