Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumf1of Structured version   Visualization version   GIF version

Theorem fsumf1of 43115
Description: Re-index a finite sum using a bijection. Same as fsumf1o 15435, but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
fsumf1of.1 𝑘𝜑
fsumf1of.2 𝑛𝜑
fsumf1of.3 (𝑘 = 𝐺𝐵 = 𝐷)
fsumf1of.4 (𝜑𝐶 ∈ Fin)
fsumf1of.5 (𝜑𝐹:𝐶1-1-onto𝐴)
fsumf1of.6 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
fsumf1of.7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsumf1of (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑛   𝐶,𝑛   𝐷,𝑘   𝑛,𝐹   𝑘,𝐺   𝑘,𝑛
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑛)   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑛)   𝐹(𝑘)   𝐺(𝑛)

Proof of Theorem fsumf1of
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3846 . . . 4 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑘𝐵)
2 nfcv 2907 . . . 4 𝑖𝐴
3 nfcv 2907 . . . 4 𝑘𝐴
4 nfcv 2907 . . . 4 𝑖𝐵
5 nfcsb1v 3857 . . . 4 𝑘𝑖 / 𝑘𝐵
61, 2, 3, 4, 5cbvsum 15407 . . 3 Σ𝑘𝐴 𝐵 = Σ𝑖𝐴 𝑖 / 𝑘𝐵
76a1i 11 . 2 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑖𝐴 𝑖 / 𝑘𝐵)
8 nfv 1917 . . . . 5 𝑘 𝑖 = 𝑗 / 𝑛𝐺
9 nfcv 2907 . . . . . 6 𝑘𝑗 / 𝑛𝐷
105, 9nfeq 2920 . . . . 5 𝑘𝑖 / 𝑘𝐵 = 𝑗 / 𝑛𝐷
118, 10nfim 1899 . . . 4 𝑘(𝑖 = 𝑗 / 𝑛𝐺𝑖 / 𝑘𝐵 = 𝑗 / 𝑛𝐷)
12 eqeq1 2742 . . . . 5 (𝑘 = 𝑖 → (𝑘 = 𝑗 / 𝑛𝐺𝑖 = 𝑗 / 𝑛𝐺))
131eqeq1d 2740 . . . . 5 (𝑘 = 𝑖 → (𝐵 = 𝑗 / 𝑛𝐷𝑖 / 𝑘𝐵 = 𝑗 / 𝑛𝐷))
1412, 13imbi12d 345 . . . 4 (𝑘 = 𝑖 → ((𝑘 = 𝑗 / 𝑛𝐺𝐵 = 𝑗 / 𝑛𝐷) ↔ (𝑖 = 𝑗 / 𝑛𝐺𝑖 / 𝑘𝐵 = 𝑗 / 𝑛𝐷)))
15 nfcv 2907 . . . . . . 7 𝑛𝑘
16 nfcsb1v 3857 . . . . . . 7 𝑛𝑗 / 𝑛𝐺
1715, 16nfeq 2920 . . . . . 6 𝑛 𝑘 = 𝑗 / 𝑛𝐺
18 nfcv 2907 . . . . . . 7 𝑛𝐵
19 nfcsb1v 3857 . . . . . . 7 𝑛𝑗 / 𝑛𝐷
2018, 19nfeq 2920 . . . . . 6 𝑛 𝐵 = 𝑗 / 𝑛𝐷
2117, 20nfim 1899 . . . . 5 𝑛(𝑘 = 𝑗 / 𝑛𝐺𝐵 = 𝑗 / 𝑛𝐷)
22 csbeq1a 3846 . . . . . . 7 (𝑛 = 𝑗𝐺 = 𝑗 / 𝑛𝐺)
2322eqeq2d 2749 . . . . . 6 (𝑛 = 𝑗 → (𝑘 = 𝐺𝑘 = 𝑗 / 𝑛𝐺))
24 csbeq1a 3846 . . . . . . 7 (𝑛 = 𝑗𝐷 = 𝑗 / 𝑛𝐷)
2524eqeq2d 2749 . . . . . 6 (𝑛 = 𝑗 → (𝐵 = 𝐷𝐵 = 𝑗 / 𝑛𝐷))
2623, 25imbi12d 345 . . . . 5 (𝑛 = 𝑗 → ((𝑘 = 𝐺𝐵 = 𝐷) ↔ (𝑘 = 𝑗 / 𝑛𝐺𝐵 = 𝑗 / 𝑛𝐷)))
27 fsumf1of.3 . . . . 5 (𝑘 = 𝐺𝐵 = 𝐷)
2821, 26, 27chvarfv 2233 . . . 4 (𝑘 = 𝑗 / 𝑛𝐺𝐵 = 𝑗 / 𝑛𝐷)
2911, 14, 28chvarfv 2233 . . 3 (𝑖 = 𝑗 / 𝑛𝐺𝑖 / 𝑘𝐵 = 𝑗 / 𝑛𝐷)
30 fsumf1of.4 . . 3 (𝜑𝐶 ∈ Fin)
31 fsumf1of.5 . . 3 (𝜑𝐹:𝐶1-1-onto𝐴)
32 fsumf1of.2 . . . . . 6 𝑛𝜑
33 nfv 1917 . . . . . 6 𝑛 𝑗𝐶
3432, 33nfan 1902 . . . . 5 𝑛(𝜑𝑗𝐶)
35 nfcv 2907 . . . . . 6 𝑛(𝐹𝑗)
3635, 16nfeq 2920 . . . . 5 𝑛(𝐹𝑗) = 𝑗 / 𝑛𝐺
3734, 36nfim 1899 . . . 4 𝑛((𝜑𝑗𝐶) → (𝐹𝑗) = 𝑗 / 𝑛𝐺)
38 eleq1w 2821 . . . . . 6 (𝑛 = 𝑗 → (𝑛𝐶𝑗𝐶))
3938anbi2d 629 . . . . 5 (𝑛 = 𝑗 → ((𝜑𝑛𝐶) ↔ (𝜑𝑗𝐶)))
40 fveq2 6774 . . . . . 6 (𝑛 = 𝑗 → (𝐹𝑛) = (𝐹𝑗))
4140, 22eqeq12d 2754 . . . . 5 (𝑛 = 𝑗 → ((𝐹𝑛) = 𝐺 ↔ (𝐹𝑗) = 𝑗 / 𝑛𝐺))
4239, 41imbi12d 345 . . . 4 (𝑛 = 𝑗 → (((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺) ↔ ((𝜑𝑗𝐶) → (𝐹𝑗) = 𝑗 / 𝑛𝐺)))
43 fsumf1of.6 . . . 4 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
4437, 42, 43chvarfv 2233 . . 3 ((𝜑𝑗𝐶) → (𝐹𝑗) = 𝑗 / 𝑛𝐺)
45 fsumf1of.1 . . . . . 6 𝑘𝜑
46 nfv 1917 . . . . . 6 𝑘 𝑖𝐴
4745, 46nfan 1902 . . . . 5 𝑘(𝜑𝑖𝐴)
485nfel1 2923 . . . . 5 𝑘𝑖 / 𝑘𝐵 ∈ ℂ
4947, 48nfim 1899 . . . 4 𝑘((𝜑𝑖𝐴) → 𝑖 / 𝑘𝐵 ∈ ℂ)
50 eleq1w 2821 . . . . . 6 (𝑘 = 𝑖 → (𝑘𝐴𝑖𝐴))
5150anbi2d 629 . . . . 5 (𝑘 = 𝑖 → ((𝜑𝑘𝐴) ↔ (𝜑𝑖𝐴)))
521eleq1d 2823 . . . . 5 (𝑘 = 𝑖 → (𝐵 ∈ ℂ ↔ 𝑖 / 𝑘𝐵 ∈ ℂ))
5351, 52imbi12d 345 . . . 4 (𝑘 = 𝑖 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑖𝐴) → 𝑖 / 𝑘𝐵 ∈ ℂ)))
54 fsumf1of.7 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
5549, 53, 54chvarfv 2233 . . 3 ((𝜑𝑖𝐴) → 𝑖 / 𝑘𝐵 ∈ ℂ)
5629, 30, 31, 44, 55fsumf1o 15435 . 2 (𝜑 → Σ𝑖𝐴 𝑖 / 𝑘𝐵 = Σ𝑗𝐶 𝑗 / 𝑛𝐷)
57 nfcv 2907 . . . . 5 𝑗𝐶
58 nfcv 2907 . . . . 5 𝑛𝐶
59 nfcv 2907 . . . . 5 𝑗𝐷
6024, 57, 58, 59, 19cbvsum 15407 . . . 4 Σ𝑛𝐶 𝐷 = Σ𝑗𝐶 𝑗 / 𝑛𝐷
6160eqcomi 2747 . . 3 Σ𝑗𝐶 𝑗 / 𝑛𝐷 = Σ𝑛𝐶 𝐷
6261a1i 11 . 2 (𝜑 → Σ𝑗𝐶 𝑗 / 𝑛𝐷 = Σ𝑛𝐶 𝐷)
637, 56, 623eqtrd 2782 1 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wnf 1786  wcel 2106  csb 3832  1-1-ontowf1o 6432  cfv 6433  Fincfn 8733  cc 10869  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398
This theorem is referenced by:  sge0f1o  43920
  Copyright terms: Public domain W3C validator