Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumf1of Structured version   Visualization version   GIF version

Theorem fsumf1of 45589
Description: Re-index a finite sum using a bijection. Same as fsumf1o 15759, but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
fsumf1of.1 𝑘𝜑
fsumf1of.2 𝑛𝜑
fsumf1of.3 (𝑘 = 𝐺𝐵 = 𝐷)
fsumf1of.4 (𝜑𝐶 ∈ Fin)
fsumf1of.5 (𝜑𝐹:𝐶1-1-onto𝐴)
fsumf1of.6 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
fsumf1of.7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsumf1of (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑛   𝐶,𝑛   𝐷,𝑘   𝑛,𝐹   𝑘,𝐺   𝑘,𝑛
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑛)   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑛)   𝐹(𝑘)   𝐺(𝑛)

Proof of Theorem fsumf1of
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3913 . . . 4 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑘𝐵)
2 nfcv 2905 . . . 4 𝑖𝐵
3 nfcsb1v 3923 . . . 4 𝑘𝑖 / 𝑘𝐵
41, 2, 3cbvsum 15731 . . 3 Σ𝑘𝐴 𝐵 = Σ𝑖𝐴 𝑖 / 𝑘𝐵
54a1i 11 . 2 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑖𝐴 𝑖 / 𝑘𝐵)
6 nfv 1914 . . . . 5 𝑘 𝑖 = 𝑗 / 𝑛𝐺
7 nfcv 2905 . . . . . 6 𝑘𝑗 / 𝑛𝐷
83, 7nfeq 2919 . . . . 5 𝑘𝑖 / 𝑘𝐵 = 𝑗 / 𝑛𝐷
96, 8nfim 1896 . . . 4 𝑘(𝑖 = 𝑗 / 𝑛𝐺𝑖 / 𝑘𝐵 = 𝑗 / 𝑛𝐷)
10 eqeq1 2741 . . . . 5 (𝑘 = 𝑖 → (𝑘 = 𝑗 / 𝑛𝐺𝑖 = 𝑗 / 𝑛𝐺))
111eqeq1d 2739 . . . . 5 (𝑘 = 𝑖 → (𝐵 = 𝑗 / 𝑛𝐷𝑖 / 𝑘𝐵 = 𝑗 / 𝑛𝐷))
1210, 11imbi12d 344 . . . 4 (𝑘 = 𝑖 → ((𝑘 = 𝑗 / 𝑛𝐺𝐵 = 𝑗 / 𝑛𝐷) ↔ (𝑖 = 𝑗 / 𝑛𝐺𝑖 / 𝑘𝐵 = 𝑗 / 𝑛𝐷)))
13 nfcv 2905 . . . . . . 7 𝑛𝑘
14 nfcsb1v 3923 . . . . . . 7 𝑛𝑗 / 𝑛𝐺
1513, 14nfeq 2919 . . . . . 6 𝑛 𝑘 = 𝑗 / 𝑛𝐺
16 nfcv 2905 . . . . . . 7 𝑛𝐵
17 nfcsb1v 3923 . . . . . . 7 𝑛𝑗 / 𝑛𝐷
1816, 17nfeq 2919 . . . . . 6 𝑛 𝐵 = 𝑗 / 𝑛𝐷
1915, 18nfim 1896 . . . . 5 𝑛(𝑘 = 𝑗 / 𝑛𝐺𝐵 = 𝑗 / 𝑛𝐷)
20 csbeq1a 3913 . . . . . . 7 (𝑛 = 𝑗𝐺 = 𝑗 / 𝑛𝐺)
2120eqeq2d 2748 . . . . . 6 (𝑛 = 𝑗 → (𝑘 = 𝐺𝑘 = 𝑗 / 𝑛𝐺))
22 csbeq1a 3913 . . . . . . 7 (𝑛 = 𝑗𝐷 = 𝑗 / 𝑛𝐷)
2322eqeq2d 2748 . . . . . 6 (𝑛 = 𝑗 → (𝐵 = 𝐷𝐵 = 𝑗 / 𝑛𝐷))
2421, 23imbi12d 344 . . . . 5 (𝑛 = 𝑗 → ((𝑘 = 𝐺𝐵 = 𝐷) ↔ (𝑘 = 𝑗 / 𝑛𝐺𝐵 = 𝑗 / 𝑛𝐷)))
25 fsumf1of.3 . . . . 5 (𝑘 = 𝐺𝐵 = 𝐷)
2619, 24, 25chvarfv 2240 . . . 4 (𝑘 = 𝑗 / 𝑛𝐺𝐵 = 𝑗 / 𝑛𝐷)
279, 12, 26chvarfv 2240 . . 3 (𝑖 = 𝑗 / 𝑛𝐺𝑖 / 𝑘𝐵 = 𝑗 / 𝑛𝐷)
28 fsumf1of.4 . . 3 (𝜑𝐶 ∈ Fin)
29 fsumf1of.5 . . 3 (𝜑𝐹:𝐶1-1-onto𝐴)
30 fsumf1of.2 . . . . . 6 𝑛𝜑
31 nfv 1914 . . . . . 6 𝑛 𝑗𝐶
3230, 31nfan 1899 . . . . 5 𝑛(𝜑𝑗𝐶)
33 nfcv 2905 . . . . . 6 𝑛(𝐹𝑗)
3433, 14nfeq 2919 . . . . 5 𝑛(𝐹𝑗) = 𝑗 / 𝑛𝐺
3532, 34nfim 1896 . . . 4 𝑛((𝜑𝑗𝐶) → (𝐹𝑗) = 𝑗 / 𝑛𝐺)
36 eleq1w 2824 . . . . . 6 (𝑛 = 𝑗 → (𝑛𝐶𝑗𝐶))
3736anbi2d 630 . . . . 5 (𝑛 = 𝑗 → ((𝜑𝑛𝐶) ↔ (𝜑𝑗𝐶)))
38 fveq2 6906 . . . . . 6 (𝑛 = 𝑗 → (𝐹𝑛) = (𝐹𝑗))
3938, 20eqeq12d 2753 . . . . 5 (𝑛 = 𝑗 → ((𝐹𝑛) = 𝐺 ↔ (𝐹𝑗) = 𝑗 / 𝑛𝐺))
4037, 39imbi12d 344 . . . 4 (𝑛 = 𝑗 → (((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺) ↔ ((𝜑𝑗𝐶) → (𝐹𝑗) = 𝑗 / 𝑛𝐺)))
41 fsumf1of.6 . . . 4 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
4235, 40, 41chvarfv 2240 . . 3 ((𝜑𝑗𝐶) → (𝐹𝑗) = 𝑗 / 𝑛𝐺)
43 fsumf1of.1 . . . . . 6 𝑘𝜑
44 nfv 1914 . . . . . 6 𝑘 𝑖𝐴
4543, 44nfan 1899 . . . . 5 𝑘(𝜑𝑖𝐴)
463nfel1 2922 . . . . 5 𝑘𝑖 / 𝑘𝐵 ∈ ℂ
4745, 46nfim 1896 . . . 4 𝑘((𝜑𝑖𝐴) → 𝑖 / 𝑘𝐵 ∈ ℂ)
48 eleq1w 2824 . . . . . 6 (𝑘 = 𝑖 → (𝑘𝐴𝑖𝐴))
4948anbi2d 630 . . . . 5 (𝑘 = 𝑖 → ((𝜑𝑘𝐴) ↔ (𝜑𝑖𝐴)))
501eleq1d 2826 . . . . 5 (𝑘 = 𝑖 → (𝐵 ∈ ℂ ↔ 𝑖 / 𝑘𝐵 ∈ ℂ))
5149, 50imbi12d 344 . . . 4 (𝑘 = 𝑖 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑖𝐴) → 𝑖 / 𝑘𝐵 ∈ ℂ)))
52 fsumf1of.7 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
5347, 51, 52chvarfv 2240 . . 3 ((𝜑𝑖𝐴) → 𝑖 / 𝑘𝐵 ∈ ℂ)
5427, 28, 29, 42, 53fsumf1o 15759 . 2 (𝜑 → Σ𝑖𝐴 𝑖 / 𝑘𝐵 = Σ𝑗𝐶 𝑗 / 𝑛𝐷)
55 nfcv 2905 . . . . 5 𝑗𝐷
5622, 55, 17cbvsum 15731 . . . 4 Σ𝑛𝐶 𝐷 = Σ𝑗𝐶 𝑗 / 𝑛𝐷
5756eqcomi 2746 . . 3 Σ𝑗𝐶 𝑗 / 𝑛𝐷 = Σ𝑛𝐶 𝐷
5857a1i 11 . 2 (𝜑 → Σ𝑗𝐶 𝑗 / 𝑛𝐷 = Σ𝑛𝐶 𝐷)
595, 54, 583eqtrd 2781 1 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2108  csb 3899  1-1-ontowf1o 6560  cfv 6561  Fincfn 8985  cc 11153  Σcsu 15722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723
This theorem is referenced by:  sge0f1o  46397
  Copyright terms: Public domain W3C validator