Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0fsummptf Structured version   Visualization version   GIF version

Theorem sge0fsummptf 43118
 Description: The generalized sum of a finite set of nonnegative extended real numbers is equal to the sum of those numbers, when none of them is +∞ (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
sge0fsummptf.k 𝑘𝜑
sge0fsummptf.a (𝜑𝐴 ∈ Fin)
sge0fsummptf.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
Assertion
Ref Expression
sge0fsummptf (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem sge0fsummptf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 sge0fsummptf.a . . 3 (𝜑𝐴 ∈ Fin)
2 sge0fsummptf.k . . . 4 𝑘𝜑
3 sge0fsummptf.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
4 eqid 2798 . . . 4 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
52, 3, 4fmptdf 6859 . . 3 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,)+∞))
61, 5sge0fsum 43069 . 2 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = Σ𝑗𝐴 ((𝑘𝐴𝐵)‘𝑗))
7 fveq2 6646 . . . 4 (𝑗 = 𝑘 → ((𝑘𝐴𝐵)‘𝑗) = ((𝑘𝐴𝐵)‘𝑘))
8 nfcv 2955 . . . 4 𝑘𝐴
9 nfcv 2955 . . . 4 𝑗𝐴
10 nfmpt1 5129 . . . . 5 𝑘(𝑘𝐴𝐵)
11 nfcv 2955 . . . . 5 𝑘𝑗
1210, 11nffv 6656 . . . 4 𝑘((𝑘𝐴𝐵)‘𝑗)
13 nfcv 2955 . . . 4 𝑗((𝑘𝐴𝐵)‘𝑘)
147, 8, 9, 12, 13cbvsum 15047 . . 3 Σ𝑗𝐴 ((𝑘𝐴𝐵)‘𝑗) = Σ𝑘𝐴 ((𝑘𝐴𝐵)‘𝑘)
1514a1i 11 . 2 (𝜑 → Σ𝑗𝐴 ((𝑘𝐴𝐵)‘𝑗) = Σ𝑘𝐴 ((𝑘𝐴𝐵)‘𝑘))
16 simpr 488 . . . . . 6 ((𝜑𝑘𝐴) → 𝑘𝐴)
174fvmpt2 6757 . . . . . 6 ((𝑘𝐴𝐵 ∈ (0[,)+∞)) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
1816, 3, 17syl2anc 587 . . . . 5 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
1918ex 416 . . . 4 (𝜑 → (𝑘𝐴 → ((𝑘𝐴𝐵)‘𝑘) = 𝐵))
202, 19ralrimi 3180 . . 3 (𝜑 → ∀𝑘𝐴 ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
2120sumeq2d 15054 . 2 (𝜑 → Σ𝑘𝐴 ((𝑘𝐴𝐵)‘𝑘) = Σ𝑘𝐴 𝐵)
226, 15, 213eqtrd 2837 1 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538  Ⅎwnf 1785   ∈ wcel 2111   ↦ cmpt 5111  ‘cfv 6325  (class class class)co 7136  Fincfn 8495  0cc0 10529  +∞cpnf 10664  [,)cico 12731  Σcsu 15037  Σ^csumge0 43044 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-inf2 9091  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-sup 8893  df-oi 8961  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-3 11692  df-n0 11889  df-z 11973  df-uz 12235  df-rp 12381  df-ico 12735  df-icc 12736  df-fz 12889  df-fzo 13032  df-seq 13368  df-exp 13429  df-hash 13690  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-sum 15038  df-sumge0 43045 This theorem is referenced by:  sge0pnffsumgt  43124
 Copyright terms: Public domain W3C validator