Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones8 Structured version   Visualization version   GIF version

Theorem sticksstones8 42110
Description: Establish mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 1-Oct-2024.)
Hypotheses
Ref Expression
sticksstones8.1 (𝜑𝑁 ∈ ℕ0)
sticksstones8.2 (𝜑𝐾 ∈ ℕ0)
sticksstones8.3 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))
sticksstones8.4 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
sticksstones8.5 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
Assertion
Ref Expression
sticksstones8 (𝜑𝐹:𝐴𝐵)
Distinct variable groups:   𝐴,𝑎,𝑗,𝑙,𝑥,𝑦   𝐵,𝑎   𝑗,𝐾,𝑙,𝑓,𝑥,𝑦   𝑔,𝐾,𝑖   𝑓,𝑁,𝑗   𝑔,𝑁   𝑓,𝑎   𝑔,𝑎,𝑖   𝜑,𝑎,𝑗,𝑙   𝑖,𝑙   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑔,𝑖)   𝐴(𝑓,𝑔,𝑖)   𝐵(𝑥,𝑦,𝑓,𝑔,𝑖,𝑗,𝑙)   𝐹(𝑥,𝑦,𝑓,𝑔,𝑖,𝑗,𝑎,𝑙)   𝐾(𝑎)   𝑁(𝑥,𝑦,𝑖,𝑎,𝑙)

Proof of Theorem sticksstones8
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2741 . . . . . . . . 9 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → (𝑒 ∈ (1...𝐾) ↦ (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎𝑙))) = (𝑒 ∈ (1...𝐾) ↦ (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎𝑙))))
2 simpr 484 . . . . . . . . . 10 (((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) ∧ 𝑒 = 𝑗) → 𝑒 = 𝑗)
32oveq2d 7464 . . . . . . . . . . 11 (((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) ∧ 𝑒 = 𝑗) → (1...𝑒) = (1...𝑗))
43sumeq1d 15748 . . . . . . . . . 10 (((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) ∧ 𝑒 = 𝑗) → Σ𝑙 ∈ (1...𝑒)(𝑎𝑙) = Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))
52, 4oveq12d 7466 . . . . . . . . 9 (((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) ∧ 𝑒 = 𝑗) → (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎𝑙)) = (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))
6 simp3 1138 . . . . . . . . 9 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → 𝑗 ∈ (1...𝐾))
7 ovexd 7483 . . . . . . . . 9 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)) ∈ V)
81, 5, 6, 7fvmptd 7036 . . . . . . . 8 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → ((𝑒 ∈ (1...𝐾) ↦ (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎𝑙)))‘𝑗) = (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))
9 sticksstones8.1 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
1093ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → 𝑁 ∈ ℕ0)
11 sticksstones8.2 . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ0)
12113ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → 𝐾 ∈ ℕ0)
13 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴) → 𝑎𝐴)
14 sticksstones8.4 . . . . . . . . . . . . . . 15 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
1514a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐴) → 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
1615eqcomd 2746 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴) → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} = 𝐴)
1713, 16eleqtrrd 2847 . . . . . . . . . . . 12 ((𝜑𝑎𝐴) → 𝑎 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
18 feq1 6728 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑎 → (𝑔:(1...(𝐾 + 1))⟶ℕ0𝑎:(1...(𝐾 + 1))⟶ℕ0))
19 simpl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑔 = 𝑎𝑖 ∈ (1...(𝐾 + 1))) → 𝑔 = 𝑎)
2019fveq1d 6922 . . . . . . . . . . . . . . . . . 18 ((𝑔 = 𝑎𝑖 ∈ (1...(𝐾 + 1))) → (𝑔𝑖) = (𝑎𝑖))
2120sumeq2dv 15750 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑎 → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖))
2221eqeq1d 2742 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑎 → (Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁))
2318, 22anbi12d 631 . . . . . . . . . . . . . . 15 (𝑔 = 𝑎 → ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁) ↔ (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁)))
2423elabg 3690 . . . . . . . . . . . . . 14 (𝑎𝐴 → (𝑎 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁)))
2513, 24syl 17 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴) → (𝑎 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁)))
2625biimpd 229 . . . . . . . . . . . 12 ((𝜑𝑎𝐴) → (𝑎 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} → (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁)))
2717, 26mpd 15 . . . . . . . . . . 11 ((𝜑𝑎𝐴) → (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁))
2827simpld 494 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝑎:(1...(𝐾 + 1))⟶ℕ0)
29283adant3 1132 . . . . . . . . 9 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → 𝑎:(1...(𝐾 + 1))⟶ℕ0)
30 eqid 2740 . . . . . . . . 9 (𝑒 ∈ (1...𝐾) ↦ (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎𝑙))) = (𝑒 ∈ (1...𝐾) ↦ (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎𝑙)))
31 fveq2 6920 . . . . . . . . . . . 12 (𝑖 = 𝑙 → (𝑎𝑖) = (𝑎𝑙))
32 nfcv 2908 . . . . . . . . . . . 12 𝑙(𝑎𝑖)
33 nfcv 2908 . . . . . . . . . . . 12 𝑖(𝑎𝑙)
3431, 32, 33cbvsum 15743 . . . . . . . . . . 11 Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = Σ𝑙 ∈ (1...(𝐾 + 1))(𝑎𝑙)
3527simprd 495 . . . . . . . . . . 11 ((𝜑𝑎𝐴) → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁)
3634, 35eqtr3id 2794 . . . . . . . . . 10 ((𝜑𝑎𝐴) → Σ𝑙 ∈ (1...(𝐾 + 1))(𝑎𝑙) = 𝑁)
37363adant3 1132 . . . . . . . . 9 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...(𝐾 + 1))(𝑎𝑙) = 𝑁)
3810, 12, 29, 6, 30, 37sticksstones7 42109 . . . . . . . 8 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → ((𝑒 ∈ (1...𝐾) ↦ (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎𝑙)))‘𝑗) ∈ (1...(𝑁 + 𝐾)))
398, 38eqeltrrd 2845 . . . . . . 7 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)) ∈ (1...(𝑁 + 𝐾)))
40393expa 1118 . . . . . 6 (((𝜑𝑎𝐴) ∧ 𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)) ∈ (1...(𝑁 + 𝐾)))
41 eqid 2740 . . . . . 6 (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))
4240, 41fmptd 7148 . . . . 5 ((𝜑𝑎𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))):(1...𝐾)⟶(1...(𝑁 + 𝐾)))
439ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) → 𝑁 ∈ ℕ0)
4443adantr 480 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → 𝑁 ∈ ℕ0)
4511ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) → 𝐾 ∈ ℕ0)
4645adantr 480 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → 𝐾 ∈ ℕ0)
4724adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑎𝐴) → (𝑎 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁)))
4847biimpd 229 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐴) → (𝑎 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} → (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁)))
4917, 48mpd 15 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴) → (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁))
5049simpld 494 . . . . . . . . . . . 12 ((𝜑𝑎𝐴) → 𝑎:(1...(𝐾 + 1))⟶ℕ0)
5150adantr 480 . . . . . . . . . . 11 (((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) → 𝑎:(1...(𝐾 + 1))⟶ℕ0)
5251adantr 480 . . . . . . . . . 10 ((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) → 𝑎:(1...(𝐾 + 1))⟶ℕ0)
5352adantr 480 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → 𝑎:(1...(𝐾 + 1))⟶ℕ0)
54 simpllr 775 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (1...𝐾))
55 simplr 768 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (1...𝐾))
56 simpr 484 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
5744, 46, 53, 54, 55, 56, 41sticksstones6 42108 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦))
5857ex 412 . . . . . . 7 ((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) → (𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦)))
5958ralrimiva 3152 . . . . . 6 (((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) → ∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦)))
6059ralrimiva 3152 . . . . 5 ((𝜑𝑎𝐴) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦)))
6142, 60jca 511 . . . 4 ((𝜑𝑎𝐴) → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))):(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦))))
62 fzfid 14024 . . . . . 6 ((𝜑𝑎𝐴) → (1...𝐾) ∈ Fin)
6342, 62fexd 7264 . . . . 5 ((𝜑𝑎𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) ∈ V)
64 feq1 6728 . . . . . . 7 (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) → (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ↔ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))):(1...𝐾)⟶(1...(𝑁 + 𝐾))))
65 fveq1 6919 . . . . . . . . . 10 (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) → (𝑓𝑥) = ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥))
66 fveq1 6919 . . . . . . . . . 10 (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) → (𝑓𝑦) = ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦))
6765, 66breq12d 5179 . . . . . . . . 9 (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) → ((𝑓𝑥) < (𝑓𝑦) ↔ ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦)))
6867imbi2d 340 . . . . . . . 8 (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) → ((𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ (𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦))))
69682ralbidv 3227 . . . . . . 7 (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦))))
7064, 69anbi12d 631 . . . . . 6 (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) → ((𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))) ↔ ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))):(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦)))))
7170elabg 3690 . . . . 5 ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) ∈ V → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ↔ ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))):(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦)))))
7263, 71syl 17 . . . 4 ((𝜑𝑎𝐴) → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ↔ ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))):(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦)))))
7361, 72mpbird 257 . . 3 ((𝜑𝑎𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))})
74 sticksstones8.5 . . . 4 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
7574a1i 11 . . 3 ((𝜑𝑎𝐴) → 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))})
7673, 75eleqtrrd 2847 . 2 ((𝜑𝑎𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) ∈ 𝐵)
77 sticksstones8.3 . 2 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))
7876, 77fmptd 7148 1 (𝜑𝐹:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wral 3067  Vcvv 3488   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  Fincfn 9003  1c1 11185   + caddc 11187   < clt 11324  0cn0 12553  ...cfz 13567  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735
This theorem is referenced by:  sticksstones11  42113  sticksstones12  42115
  Copyright terms: Public domain W3C validator