Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones8 Structured version   Visualization version   GIF version

Theorem sticksstones8 39778
Description: Establish mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 1-Oct-2024.)
Hypotheses
Ref Expression
sticksstones8.1 (𝜑𝑁 ∈ ℕ0)
sticksstones8.2 (𝜑𝐾 ∈ ℕ0)
sticksstones8.3 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))
sticksstones8.4 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
sticksstones8.5 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
Assertion
Ref Expression
sticksstones8 (𝜑𝐹:𝐴𝐵)
Distinct variable groups:   𝐴,𝑎,𝑗,𝑙,𝑥,𝑦   𝐵,𝑎   𝑗,𝐾,𝑙,𝑓,𝑥,𝑦   𝑔,𝐾,𝑖   𝑓,𝑁,𝑗   𝑔,𝑁   𝑓,𝑎   𝑔,𝑎,𝑖   𝜑,𝑎,𝑗,𝑙   𝑖,𝑙   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑔,𝑖)   𝐴(𝑓,𝑔,𝑖)   𝐵(𝑥,𝑦,𝑓,𝑔,𝑖,𝑗,𝑙)   𝐹(𝑥,𝑦,𝑓,𝑔,𝑖,𝑗,𝑎,𝑙)   𝐾(𝑎)   𝑁(𝑥,𝑦,𝑖,𝑎,𝑙)

Proof of Theorem sticksstones8
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2737 . . . . . . . . 9 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → (𝑒 ∈ (1...𝐾) ↦ (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎𝑙))) = (𝑒 ∈ (1...𝐾) ↦ (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎𝑙))))
2 simpr 488 . . . . . . . . . 10 (((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) ∧ 𝑒 = 𝑗) → 𝑒 = 𝑗)
32oveq2d 7207 . . . . . . . . . . 11 (((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) ∧ 𝑒 = 𝑗) → (1...𝑒) = (1...𝑗))
43sumeq1d 15230 . . . . . . . . . 10 (((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) ∧ 𝑒 = 𝑗) → Σ𝑙 ∈ (1...𝑒)(𝑎𝑙) = Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))
52, 4oveq12d 7209 . . . . . . . . 9 (((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) ∧ 𝑒 = 𝑗) → (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎𝑙)) = (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))
6 simp3 1140 . . . . . . . . 9 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → 𝑗 ∈ (1...𝐾))
7 ovexd 7226 . . . . . . . . 9 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)) ∈ V)
81, 5, 6, 7fvmptd 6803 . . . . . . . 8 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → ((𝑒 ∈ (1...𝐾) ↦ (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎𝑙)))‘𝑗) = (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))
9 sticksstones8.1 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
1093ad2ant1 1135 . . . . . . . . 9 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → 𝑁 ∈ ℕ0)
11 sticksstones8.2 . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ0)
12113ad2ant1 1135 . . . . . . . . 9 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → 𝐾 ∈ ℕ0)
13 simpr 488 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴) → 𝑎𝐴)
14 sticksstones8.4 . . . . . . . . . . . . . . 15 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
1514a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐴) → 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
1615eqcomd 2742 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴) → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} = 𝐴)
1713, 16eleqtrrd 2834 . . . . . . . . . . . 12 ((𝜑𝑎𝐴) → 𝑎 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
18 feq1 6504 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑎 → (𝑔:(1...(𝐾 + 1))⟶ℕ0𝑎:(1...(𝐾 + 1))⟶ℕ0))
19 simpl 486 . . . . . . . . . . . . . . . . . . 19 ((𝑔 = 𝑎𝑖 ∈ (1...(𝐾 + 1))) → 𝑔 = 𝑎)
2019fveq1d 6697 . . . . . . . . . . . . . . . . . 18 ((𝑔 = 𝑎𝑖 ∈ (1...(𝐾 + 1))) → (𝑔𝑖) = (𝑎𝑖))
2120sumeq2dv 15232 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑎 → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖))
2221eqeq1d 2738 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑎 → (Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁))
2318, 22anbi12d 634 . . . . . . . . . . . . . . 15 (𝑔 = 𝑎 → ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁) ↔ (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁)))
2423elabg 3574 . . . . . . . . . . . . . 14 (𝑎𝐴 → (𝑎 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁)))
2513, 24syl 17 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴) → (𝑎 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁)))
2625biimpd 232 . . . . . . . . . . . 12 ((𝜑𝑎𝐴) → (𝑎 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} → (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁)))
2717, 26mpd 15 . . . . . . . . . . 11 ((𝜑𝑎𝐴) → (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁))
2827simpld 498 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝑎:(1...(𝐾 + 1))⟶ℕ0)
29283adant3 1134 . . . . . . . . 9 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → 𝑎:(1...(𝐾 + 1))⟶ℕ0)
30 eqid 2736 . . . . . . . . 9 (𝑒 ∈ (1...𝐾) ↦ (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎𝑙))) = (𝑒 ∈ (1...𝐾) ↦ (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎𝑙)))
31 fveq2 6695 . . . . . . . . . . . 12 (𝑖 = 𝑙 → (𝑎𝑖) = (𝑎𝑙))
32 nfcv 2897 . . . . . . . . . . . 12 𝑙(1...(𝐾 + 1))
33 nfcv 2897 . . . . . . . . . . . 12 𝑖(1...(𝐾 + 1))
34 nfcv 2897 . . . . . . . . . . . 12 𝑙(𝑎𝑖)
35 nfcv 2897 . . . . . . . . . . . 12 𝑖(𝑎𝑙)
3631, 32, 33, 34, 35cbvsum 15224 . . . . . . . . . . 11 Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = Σ𝑙 ∈ (1...(𝐾 + 1))(𝑎𝑙)
3727simprd 499 . . . . . . . . . . 11 ((𝜑𝑎𝐴) → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁)
3836, 37eqtr3id 2785 . . . . . . . . . 10 ((𝜑𝑎𝐴) → Σ𝑙 ∈ (1...(𝐾 + 1))(𝑎𝑙) = 𝑁)
39383adant3 1134 . . . . . . . . 9 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...(𝐾 + 1))(𝑎𝑙) = 𝑁)
4010, 12, 29, 6, 30, 39sticksstones7 39777 . . . . . . . 8 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → ((𝑒 ∈ (1...𝐾) ↦ (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎𝑙)))‘𝑗) ∈ (1...(𝑁 + 𝐾)))
418, 40eqeltrrd 2832 . . . . . . 7 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)) ∈ (1...(𝑁 + 𝐾)))
42413expa 1120 . . . . . 6 (((𝜑𝑎𝐴) ∧ 𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)) ∈ (1...(𝑁 + 𝐾)))
43 eqid 2736 . . . . . 6 (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))
4442, 43fmptd 6909 . . . . 5 ((𝜑𝑎𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))):(1...𝐾)⟶(1...(𝑁 + 𝐾)))
459ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) → 𝑁 ∈ ℕ0)
4645adantr 484 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → 𝑁 ∈ ℕ0)
4711ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) → 𝐾 ∈ ℕ0)
4847adantr 484 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → 𝐾 ∈ ℕ0)
4924adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑎𝐴) → (𝑎 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁)))
5049biimpd 232 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐴) → (𝑎 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} → (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁)))
5117, 50mpd 15 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴) → (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁))
5251simpld 498 . . . . . . . . . . . 12 ((𝜑𝑎𝐴) → 𝑎:(1...(𝐾 + 1))⟶ℕ0)
5352adantr 484 . . . . . . . . . . 11 (((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) → 𝑎:(1...(𝐾 + 1))⟶ℕ0)
5453adantr 484 . . . . . . . . . 10 ((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) → 𝑎:(1...(𝐾 + 1))⟶ℕ0)
5554adantr 484 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → 𝑎:(1...(𝐾 + 1))⟶ℕ0)
56 simpllr 776 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (1...𝐾))
57 simplr 769 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (1...𝐾))
58 simpr 488 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
5946, 48, 55, 56, 57, 58, 43sticksstones6 39776 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦))
6059ex 416 . . . . . . 7 ((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) → (𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦)))
6160ralrimiva 3095 . . . . . 6 (((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) → ∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦)))
6261ralrimiva 3095 . . . . 5 ((𝜑𝑎𝐴) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦)))
6344, 62jca 515 . . . 4 ((𝜑𝑎𝐴) → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))):(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦))))
64 fzfid 13511 . . . . . 6 ((𝜑𝑎𝐴) → (1...𝐾) ∈ Fin)
6544, 64fexd 7021 . . . . 5 ((𝜑𝑎𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) ∈ V)
66 feq1 6504 . . . . . . 7 (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) → (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ↔ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))):(1...𝐾)⟶(1...(𝑁 + 𝐾))))
67 fveq1 6694 . . . . . . . . . 10 (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) → (𝑓𝑥) = ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥))
68 fveq1 6694 . . . . . . . . . 10 (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) → (𝑓𝑦) = ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦))
6967, 68breq12d 5052 . . . . . . . . 9 (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) → ((𝑓𝑥) < (𝑓𝑦) ↔ ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦)))
7069imbi2d 344 . . . . . . . 8 (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) → ((𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ (𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦))))
71702ralbidv 3110 . . . . . . 7 (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦))))
7266, 71anbi12d 634 . . . . . 6 (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) → ((𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))) ↔ ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))):(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦)))))
7372elabg 3574 . . . . 5 ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) ∈ V → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ↔ ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))):(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦)))))
7465, 73syl 17 . . . 4 ((𝜑𝑎𝐴) → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ↔ ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))):(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦)))))
7563, 74mpbird 260 . . 3 ((𝜑𝑎𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))})
76 sticksstones8.5 . . . 4 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
7776a1i 11 . . 3 ((𝜑𝑎𝐴) → 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))})
7875, 77eleqtrrd 2834 . 2 ((𝜑𝑎𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) ∈ 𝐵)
79 sticksstones8.3 . 2 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))
8078, 79fmptd 6909 1 (𝜑𝐹:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  {cab 2714  wral 3051  Vcvv 3398   class class class wbr 5039  cmpt 5120  wf 6354  cfv 6358  (class class class)co 7191  Fincfn 8604  1c1 10695   + caddc 10697   < clt 10832  0cn0 12055  ...cfz 13060  Σcsu 15214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-ico 12906  df-fz 13061  df-fzo 13204  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-clim 15014  df-sum 15215
This theorem is referenced by:  sticksstones11  39781  sticksstones12  39783
  Copyright terms: Public domain W3C validator