Step | Hyp | Ref
| Expression |
1 | | eqidd 2739 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ (1...𝐾)) → (𝑒 ∈ (1...𝐾) ↦ (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎‘𝑙))) = (𝑒 ∈ (1...𝐾) ↦ (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎‘𝑙)))) |
2 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑒 = 𝑗) → 𝑒 = 𝑗) |
3 | 2 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑒 = 𝑗) → (1...𝑒) = (1...𝑗)) |
4 | 3 | sumeq1d 15413 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑒 = 𝑗) → Σ𝑙 ∈ (1...𝑒)(𝑎‘𝑙) = Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)) |
5 | 2, 4 | oveq12d 7293 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑒 = 𝑗) → (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎‘𝑙)) = (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) |
6 | | simp3 1137 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ (1...𝐾)) → 𝑗 ∈ (1...𝐾)) |
7 | | ovexd 7310 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)) ∈ V) |
8 | 1, 5, 6, 7 | fvmptd 6882 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ (1...𝐾)) → ((𝑒 ∈ (1...𝐾) ↦ (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎‘𝑙)))‘𝑗) = (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) |
9 | | sticksstones8.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
10 | 9 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ (1...𝐾)) → 𝑁 ∈
ℕ0) |
11 | | sticksstones8.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
12 | 11 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ (1...𝐾)) → 𝐾 ∈
ℕ0) |
13 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐴) |
14 | | sticksstones8.4 |
. . . . . . . . . . . . . . 15
⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} |
15 | 14 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)}) |
16 | 15 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} = 𝐴) |
17 | 13, 16 | eleqtrrd 2842 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)}) |
18 | | feq1 6581 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑎 → (𝑔:(1...(𝐾 + 1))⟶ℕ0 ↔
𝑎:(1...(𝐾 +
1))⟶ℕ0)) |
19 | | simpl 483 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑔 = 𝑎 ∧ 𝑖 ∈ (1...(𝐾 + 1))) → 𝑔 = 𝑎) |
20 | 19 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑔 = 𝑎 ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝑔‘𝑖) = (𝑎‘𝑖)) |
21 | 20 | sumeq2dv 15415 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = 𝑎 → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎‘𝑖)) |
22 | 21 | eqeq1d 2740 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑎 → (Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎‘𝑖) = 𝑁)) |
23 | 18, 22 | anbi12d 631 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑎 → ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁) ↔ (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎‘𝑖) = 𝑁))) |
24 | 23 | elabg 3607 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ 𝐴 → (𝑎 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ↔ (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎‘𝑖) = 𝑁))) |
25 | 13, 24 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑎 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ↔ (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎‘𝑖) = 𝑁))) |
26 | 25 | biimpd 228 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑎 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} → (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎‘𝑖) = 𝑁))) |
27 | 17, 26 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎‘𝑖) = 𝑁)) |
28 | 27 | simpld 495 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎:(1...(𝐾 +
1))⟶ℕ0) |
29 | 28 | 3adant3 1131 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ (1...𝐾)) → 𝑎:(1...(𝐾 +
1))⟶ℕ0) |
30 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑒 ∈ (1...𝐾) ↦ (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎‘𝑙))) = (𝑒 ∈ (1...𝐾) ↦ (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎‘𝑙))) |
31 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑙 → (𝑎‘𝑖) = (𝑎‘𝑙)) |
32 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑙(1...(𝐾 + 1)) |
33 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(1...(𝐾 + 1)) |
34 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑙(𝑎‘𝑖) |
35 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝑎‘𝑙) |
36 | 31, 32, 33, 34, 35 | cbvsum 15407 |
. . . . . . . . . . 11
⊢
Σ𝑖 ∈
(1...(𝐾 + 1))(𝑎‘𝑖) = Σ𝑙 ∈ (1...(𝐾 + 1))(𝑎‘𝑙) |
37 | 27 | simprd 496 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎‘𝑖) = 𝑁) |
38 | 36, 37 | eqtr3id 2792 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → Σ𝑙 ∈ (1...(𝐾 + 1))(𝑎‘𝑙) = 𝑁) |
39 | 38 | 3adant3 1131 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...(𝐾 + 1))(𝑎‘𝑙) = 𝑁) |
40 | 10, 12, 29, 6, 30, 39 | sticksstones7 40108 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ (1...𝐾)) → ((𝑒 ∈ (1...𝐾) ↦ (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎‘𝑙)))‘𝑗) ∈ (1...(𝑁 + 𝐾))) |
41 | 8, 40 | eqeltrrd 2840 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)) ∈ (1...(𝑁 + 𝐾))) |
42 | 41 | 3expa 1117 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)) ∈ (1...(𝑁 + 𝐾))) |
43 | | eqid 2738 |
. . . . . 6
⊢ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) |
44 | 42, 43 | fmptd 6988 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))):(1...𝐾)⟶(1...(𝑁 + 𝐾))) |
45 | 9 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) → 𝑁 ∈
ℕ0) |
46 | 45 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → 𝑁 ∈
ℕ0) |
47 | 11 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) → 𝐾 ∈
ℕ0) |
48 | 47 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → 𝐾 ∈
ℕ0) |
49 | 24 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑎 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ↔ (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎‘𝑖) = 𝑁))) |
50 | 49 | biimpd 228 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑎 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} → (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎‘𝑖) = 𝑁))) |
51 | 17, 50 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎‘𝑖) = 𝑁)) |
52 | 51 | simpld 495 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎:(1...(𝐾 +
1))⟶ℕ0) |
53 | 52 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 ∈ (1...𝐾)) → 𝑎:(1...(𝐾 +
1))⟶ℕ0) |
54 | 53 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) → 𝑎:(1...(𝐾 +
1))⟶ℕ0) |
55 | 54 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → 𝑎:(1...(𝐾 +
1))⟶ℕ0) |
56 | | simpllr 773 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (1...𝐾)) |
57 | | simplr 766 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (1...𝐾)) |
58 | | simpr 485 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦) |
59 | 46, 48, 55, 56, 57, 58, 43 | sticksstones6 40107 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))‘𝑦)) |
60 | 59 | ex 413 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) → (𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))‘𝑦))) |
61 | 60 | ralrimiva 3103 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 ∈ (1...𝐾)) → ∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))‘𝑦))) |
62 | 61 | ralrimiva 3103 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))‘𝑦))) |
63 | 44, 62 | jca 512 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))):(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))‘𝑦)))) |
64 | | fzfid 13693 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (1...𝐾) ∈ Fin) |
65 | 44, 64 | fexd 7103 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) ∈ V) |
66 | | feq1 6581 |
. . . . . . 7
⊢ (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) → (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ↔ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))):(1...𝐾)⟶(1...(𝑁 + 𝐾)))) |
67 | | fveq1 6773 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) → (𝑓‘𝑥) = ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))‘𝑥)) |
68 | | fveq1 6773 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) → (𝑓‘𝑦) = ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))‘𝑦)) |
69 | 67, 68 | breq12d 5087 |
. . . . . . . . 9
⊢ (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) → ((𝑓‘𝑥) < (𝑓‘𝑦) ↔ ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))‘𝑦))) |
70 | 69 | imbi2d 341 |
. . . . . . . 8
⊢ (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) → ((𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)) ↔ (𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))‘𝑦)))) |
71 | 70 | 2ralbidv 3129 |
. . . . . . 7
⊢ (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)) ↔ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))‘𝑦)))) |
72 | 66, 71 | anbi12d 631 |
. . . . . 6
⊢ (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) → ((𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦))) ↔ ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))):(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))‘𝑦))))) |
73 | 72 | elabg 3607 |
. . . . 5
⊢ ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) ∈ V → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ↔ ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))):(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))‘𝑦))))) |
74 | 65, 73 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ↔ ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))):(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))‘𝑦))))) |
75 | 63, 74 | mpbird 256 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))}) |
76 | | sticksstones8.5 |
. . . 4
⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} |
77 | 76 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))}) |
78 | 75, 77 | eleqtrrd 2842 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) ∈ 𝐵) |
79 | | sticksstones8.3 |
. 2
⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) |
80 | 78, 79 | fmptd 6988 |
1
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |