Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones8 Structured version   Visualization version   GIF version

Theorem sticksstones8 42166
Description: Establish mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 1-Oct-2024.)
Hypotheses
Ref Expression
sticksstones8.1 (𝜑𝑁 ∈ ℕ0)
sticksstones8.2 (𝜑𝐾 ∈ ℕ0)
sticksstones8.3 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))
sticksstones8.4 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
sticksstones8.5 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
Assertion
Ref Expression
sticksstones8 (𝜑𝐹:𝐴𝐵)
Distinct variable groups:   𝐴,𝑎,𝑗,𝑙,𝑥,𝑦   𝐵,𝑎   𝑗,𝐾,𝑙,𝑓,𝑥,𝑦   𝑔,𝐾,𝑖   𝑓,𝑁,𝑗   𝑔,𝑁   𝑓,𝑎   𝑔,𝑎,𝑖   𝜑,𝑎,𝑗,𝑙   𝑖,𝑙   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑔,𝑖)   𝐴(𝑓,𝑔,𝑖)   𝐵(𝑥,𝑦,𝑓,𝑔,𝑖,𝑗,𝑙)   𝐹(𝑥,𝑦,𝑓,𝑔,𝑖,𝑗,𝑎,𝑙)   𝐾(𝑎)   𝑁(𝑥,𝑦,𝑖,𝑎,𝑙)

Proof of Theorem sticksstones8
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2736 . . . . . . . . 9 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → (𝑒 ∈ (1...𝐾) ↦ (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎𝑙))) = (𝑒 ∈ (1...𝐾) ↦ (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎𝑙))))
2 simpr 484 . . . . . . . . . 10 (((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) ∧ 𝑒 = 𝑗) → 𝑒 = 𝑗)
32oveq2d 7421 . . . . . . . . . . 11 (((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) ∧ 𝑒 = 𝑗) → (1...𝑒) = (1...𝑗))
43sumeq1d 15716 . . . . . . . . . 10 (((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) ∧ 𝑒 = 𝑗) → Σ𝑙 ∈ (1...𝑒)(𝑎𝑙) = Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))
52, 4oveq12d 7423 . . . . . . . . 9 (((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) ∧ 𝑒 = 𝑗) → (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎𝑙)) = (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))
6 simp3 1138 . . . . . . . . 9 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → 𝑗 ∈ (1...𝐾))
7 ovexd 7440 . . . . . . . . 9 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)) ∈ V)
81, 5, 6, 7fvmptd 6993 . . . . . . . 8 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → ((𝑒 ∈ (1...𝐾) ↦ (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎𝑙)))‘𝑗) = (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))
9 sticksstones8.1 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
1093ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → 𝑁 ∈ ℕ0)
11 sticksstones8.2 . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ0)
12113ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → 𝐾 ∈ ℕ0)
13 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴) → 𝑎𝐴)
14 sticksstones8.4 . . . . . . . . . . . . . . 15 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
1514a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐴) → 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
1615eqcomd 2741 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴) → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} = 𝐴)
1713, 16eleqtrrd 2837 . . . . . . . . . . . 12 ((𝜑𝑎𝐴) → 𝑎 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
18 feq1 6686 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑎 → (𝑔:(1...(𝐾 + 1))⟶ℕ0𝑎:(1...(𝐾 + 1))⟶ℕ0))
19 simpl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑔 = 𝑎𝑖 ∈ (1...(𝐾 + 1))) → 𝑔 = 𝑎)
2019fveq1d 6878 . . . . . . . . . . . . . . . . . 18 ((𝑔 = 𝑎𝑖 ∈ (1...(𝐾 + 1))) → (𝑔𝑖) = (𝑎𝑖))
2120sumeq2dv 15718 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑎 → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖))
2221eqeq1d 2737 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑎 → (Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁))
2318, 22anbi12d 632 . . . . . . . . . . . . . . 15 (𝑔 = 𝑎 → ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁) ↔ (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁)))
2423elabg 3655 . . . . . . . . . . . . . 14 (𝑎𝐴 → (𝑎 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁)))
2513, 24syl 17 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴) → (𝑎 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁)))
2625biimpd 229 . . . . . . . . . . . 12 ((𝜑𝑎𝐴) → (𝑎 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} → (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁)))
2717, 26mpd 15 . . . . . . . . . . 11 ((𝜑𝑎𝐴) → (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁))
2827simpld 494 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝑎:(1...(𝐾 + 1))⟶ℕ0)
29283adant3 1132 . . . . . . . . 9 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → 𝑎:(1...(𝐾 + 1))⟶ℕ0)
30 eqid 2735 . . . . . . . . 9 (𝑒 ∈ (1...𝐾) ↦ (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎𝑙))) = (𝑒 ∈ (1...𝐾) ↦ (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎𝑙)))
31 fveq2 6876 . . . . . . . . . . . 12 (𝑖 = 𝑙 → (𝑎𝑖) = (𝑎𝑙))
32 nfcv 2898 . . . . . . . . . . . 12 𝑙(𝑎𝑖)
33 nfcv 2898 . . . . . . . . . . . 12 𝑖(𝑎𝑙)
3431, 32, 33cbvsum 15711 . . . . . . . . . . 11 Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = Σ𝑙 ∈ (1...(𝐾 + 1))(𝑎𝑙)
3527simprd 495 . . . . . . . . . . 11 ((𝜑𝑎𝐴) → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁)
3634, 35eqtr3id 2784 . . . . . . . . . 10 ((𝜑𝑎𝐴) → Σ𝑙 ∈ (1...(𝐾 + 1))(𝑎𝑙) = 𝑁)
37363adant3 1132 . . . . . . . . 9 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...(𝐾 + 1))(𝑎𝑙) = 𝑁)
3810, 12, 29, 6, 30, 37sticksstones7 42165 . . . . . . . 8 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → ((𝑒 ∈ (1...𝐾) ↦ (𝑒 + Σ𝑙 ∈ (1...𝑒)(𝑎𝑙)))‘𝑗) ∈ (1...(𝑁 + 𝐾)))
398, 38eqeltrrd 2835 . . . . . . 7 ((𝜑𝑎𝐴𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)) ∈ (1...(𝑁 + 𝐾)))
40393expa 1118 . . . . . 6 (((𝜑𝑎𝐴) ∧ 𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)) ∈ (1...(𝑁 + 𝐾)))
41 eqid 2735 . . . . . 6 (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))
4240, 41fmptd 7104 . . . . 5 ((𝜑𝑎𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))):(1...𝐾)⟶(1...(𝑁 + 𝐾)))
439ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) → 𝑁 ∈ ℕ0)
4443adantr 480 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → 𝑁 ∈ ℕ0)
4511ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) → 𝐾 ∈ ℕ0)
4645adantr 480 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → 𝐾 ∈ ℕ0)
4724adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑎𝐴) → (𝑎 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁)))
4847biimpd 229 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐴) → (𝑎 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} → (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁)))
4917, 48mpd 15 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴) → (𝑎:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑎𝑖) = 𝑁))
5049simpld 494 . . . . . . . . . . . 12 ((𝜑𝑎𝐴) → 𝑎:(1...(𝐾 + 1))⟶ℕ0)
5150adantr 480 . . . . . . . . . . 11 (((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) → 𝑎:(1...(𝐾 + 1))⟶ℕ0)
5251adantr 480 . . . . . . . . . 10 ((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) → 𝑎:(1...(𝐾 + 1))⟶ℕ0)
5352adantr 480 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → 𝑎:(1...(𝐾 + 1))⟶ℕ0)
54 simpllr 775 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (1...𝐾))
55 simplr 768 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (1...𝐾))
56 simpr 484 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
5744, 46, 53, 54, 55, 56, 41sticksstones6 42164 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 < 𝑦) → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦))
5857ex 412 . . . . . . 7 ((((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) ∧ 𝑦 ∈ (1...𝐾)) → (𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦)))
5958ralrimiva 3132 . . . . . 6 (((𝜑𝑎𝐴) ∧ 𝑥 ∈ (1...𝐾)) → ∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦)))
6059ralrimiva 3132 . . . . 5 ((𝜑𝑎𝐴) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦)))
6142, 60jca 511 . . . 4 ((𝜑𝑎𝐴) → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))):(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦))))
62 fzfid 13991 . . . . . 6 ((𝜑𝑎𝐴) → (1...𝐾) ∈ Fin)
6342, 62fexd 7219 . . . . 5 ((𝜑𝑎𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) ∈ V)
64 feq1 6686 . . . . . . 7 (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) → (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ↔ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))):(1...𝐾)⟶(1...(𝑁 + 𝐾))))
65 fveq1 6875 . . . . . . . . . 10 (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) → (𝑓𝑥) = ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥))
66 fveq1 6875 . . . . . . . . . 10 (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) → (𝑓𝑦) = ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦))
6765, 66breq12d 5132 . . . . . . . . 9 (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) → ((𝑓𝑥) < (𝑓𝑦) ↔ ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦)))
6867imbi2d 340 . . . . . . . 8 (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) → ((𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ (𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦))))
69682ralbidv 3205 . . . . . . 7 (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦))))
7064, 69anbi12d 632 . . . . . 6 (𝑓 = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) → ((𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))) ↔ ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))):(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦)))))
7170elabg 3655 . . . . 5 ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) ∈ V → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ↔ ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))):(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦)))))
7263, 71syl 17 . . . 4 ((𝜑𝑎𝐴) → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ↔ ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))):(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑥) < ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))‘𝑦)))))
7361, 72mpbird 257 . . 3 ((𝜑𝑎𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))})
74 sticksstones8.5 . . . 4 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
7574a1i 11 . . 3 ((𝜑𝑎𝐴) → 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))})
7673, 75eleqtrrd 2837 . 2 ((𝜑𝑎𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) ∈ 𝐵)
77 sticksstones8.3 . 2 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))
7876, 77fmptd 7104 1 (𝜑𝐹:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  {cab 2713  wral 3051  Vcvv 3459   class class class wbr 5119  cmpt 5201  wf 6527  cfv 6531  (class class class)co 7405  Fincfn 8959  1c1 11130   + caddc 11132   < clt 11269  0cn0 12501  ...cfz 13524  Σcsu 15702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-ico 13368  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703
This theorem is referenced by:  sticksstones11  42169  sticksstones12  42171
  Copyright terms: Public domain W3C validator