Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumreclf | Structured version Visualization version GIF version |
Description: Closure of a finite sum of reals. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
fsumreclf.k | ⊢ Ⅎ𝑘𝜑 |
fsumreclf.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumreclf.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
fsumreclf | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1a 3848 | . . . 4 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
2 | nfcv 2902 | . . . 4 ⊢ Ⅎ𝑗𝐴 | |
3 | nfcv 2902 | . . . 4 ⊢ Ⅎ𝑘𝐴 | |
4 | nfcv 2902 | . . . 4 ⊢ Ⅎ𝑗𝐵 | |
5 | nfcsb1v 3859 | . . . 4 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 | |
6 | 1, 2, 3, 4, 5 | cbvsum 15435 | . . 3 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 |
7 | 6 | a1i 11 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵) |
8 | fsumreclf.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
9 | fsumreclf.k | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
10 | nfv 1913 | . . . . . 6 ⊢ Ⅎ𝑘 𝑗 ∈ 𝐴 | |
11 | 9, 10 | nfan 1898 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝐴) |
12 | 5 | nfel1 2918 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ |
13 | 11, 12 | nfim 1895 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
14 | eleq1w 2816 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) | |
15 | 14 | anbi2d 628 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑗 ∈ 𝐴))) |
16 | 1 | eleq1d 2818 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ)) |
17 | 15, 16 | imbi12d 344 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ))) |
18 | fsumreclf.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
19 | 13, 17, 18 | chvarfv 2228 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
20 | 8, 19 | fsumrecl 15474 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
21 | 7, 20 | eqeltrd 2834 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2101 ⦋csb 3834 Fincfn 8753 ℝcr 10898 Σcsu 15425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-inf2 9427 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 ax-pre-sup 10977 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-se 5547 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-isom 6456 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-sup 9229 df-oi 9297 df-card 9725 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-3 12065 df-n0 12262 df-z 12348 df-uz 12611 df-rp 12759 df-fz 13268 df-fzo 13411 df-seq 13750 df-exp 13811 df-hash 14073 df-cj 14838 df-re 14839 df-im 14840 df-sqrt 14974 df-abs 14975 df-clim 15225 df-sum 15426 |
This theorem is referenced by: rrndistlt 43866 sge0gtfsumgt 44017 sge0uzfsumgt 44018 sge0reuz 44021 sge0reuzb 44022 hoiqssbllem2 44197 |
Copyright terms: Public domain | W3C validator |