Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvsumi | Structured version Visualization version GIF version |
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) |
Ref | Expression |
---|---|
cbvsumi.1 | ⊢ Ⅎ𝑘𝐵 |
cbvsumi.2 | ⊢ Ⅎ𝑗𝐶 |
cbvsumi.3 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvsumi | ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvsumi.3 | . 2 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
2 | nfcv 2906 | . 2 ⊢ Ⅎ𝑘𝐴 | |
3 | nfcv 2906 | . 2 ⊢ Ⅎ𝑗𝐴 | |
4 | cbvsumi.1 | . 2 ⊢ Ⅎ𝑘𝐵 | |
5 | cbvsumi.2 | . 2 ⊢ Ⅎ𝑗𝐶 | |
6 | 1, 2, 3, 4, 5 | cbvsum 15335 | 1 ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Ⅎwnfc 2886 Σcsu 15325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-xp 5586 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-iota 6376 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-seq 13650 df-sum 15326 |
This theorem is referenced by: sumfc 15349 sumss2 15366 fsumzcl2 15379 fsumsplitf 15382 sumsnf 15383 sumsns 15390 fsummsnunz 15394 fsumsplitsnun 15395 fsum2dlem 15410 fsumcom2 15414 fsumshftm 15421 fsumrlim 15451 fsumo1 15452 o1fsum 15453 fsumiun 15461 ovolfiniun 24570 ovoliun2 24575 volfiniun 24616 itgfsum 24896 elplyd 25268 coeeq2 25308 fsumdvdscom 26239 fsumdvdsmul 26249 fsumvma 26266 fsumshftd 36893 binomcxplemdvsum 41862 sumsnd 42458 fourierdlem115 43652 fsummsndifre 44712 fsumsplitsndif 44713 fsummmodsndifre 44714 fsummmodsnunz 44715 |
Copyright terms: Public domain | W3C validator |