MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvsumi Structured version   Visualization version   GIF version

Theorem cbvsumi 15648
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.)
Hypotheses
Ref Expression
cbvsumi.1 𝑘𝐵
cbvsumi.2 𝑗𝐶
cbvsumi.3 (𝑗 = 𝑘𝐵 = 𝐶)
Assertion
Ref Expression
cbvsumi Σ𝑗𝐴 𝐵 = Σ𝑘𝐴 𝐶
Distinct variable group:   𝑗,𝑘,𝐴
Allowed substitution hints:   𝐵(𝑗,𝑘)   𝐶(𝑗,𝑘)

Proof of Theorem cbvsumi
StepHypRef Expression
1 cbvsumi.3 . 2 (𝑗 = 𝑘𝐵 = 𝐶)
2 nfcv 2902 . 2 𝑘𝐴
3 nfcv 2902 . 2 𝑗𝐴
4 cbvsumi.1 . 2 𝑘𝐵
5 cbvsumi.2 . 2 𝑗𝐶
61, 2, 3, 4, 5cbvsum 15646 1 Σ𝑗𝐴 𝐵 = Σ𝑘𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wnfc 2882  Σcsu 15637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-xp 5682  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-iota 6495  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-seq 13972  df-sum 15638
This theorem is referenced by:  sumfc  15660  sumss2  15677  fsumzcl2  15690  fsumsplitf  15693  sumsnf  15694  sumsns  15701  fsummsnunz  15705  fsumsplitsnun  15706  fsum2dlem  15721  fsumcom2  15725  fsumshftm  15732  fsumrlim  15762  fsumo1  15763  o1fsum  15764  fsumiun  15772  ovolfiniun  25251  ovoliun2  25256  volfiniun  25297  itgfsum  25577  elplyd  25952  coeeq2  25992  fsumdvdscom  26926  fsumdvdsmul  26936  fsumvma  26953  fsumshftd  38126  binomcxplemdvsum  43417  sumsnd  44013  fourierdlem115  45236  fsummsndifre  46339  fsumsplitsndif  46340  fsummmodsndifre  46341  fsummmodsnunz  46342
  Copyright terms: Public domain W3C validator