Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsummulc1f Structured version   Visualization version   GIF version

Theorem fsummulc1f 44222
Description: Closure of a finite sum of complex numbers 𝐴(𝑘). A version of fsummulc1 15727 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fsummulc1f.ph 𝑘𝜑
fsummulclf.a (𝜑𝐴 ∈ Fin)
fsummulclf.c (𝜑𝐶 ∈ ℂ)
fsummulclf.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsummulc1f (𝜑 → (Σ𝑘𝐴 𝐵 · 𝐶) = Σ𝑘𝐴 (𝐵 · 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fsummulc1f
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3906 . . . . 5 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
2 nfcv 2904 . . . . 5 𝑗𝐴
3 nfcv 2904 . . . . 5 𝑘𝐴
4 nfcv 2904 . . . . 5 𝑗𝐵
5 nfcsb1v 3917 . . . . 5 𝑘𝑗 / 𝑘𝐵
61, 2, 3, 4, 5cbvsum 15637 . . . 4 Σ𝑘𝐴 𝐵 = Σ𝑗𝐴 𝑗 / 𝑘𝐵
76oveq1i 7414 . . 3 𝑘𝐴 𝐵 · 𝐶) = (Σ𝑗𝐴 𝑗 / 𝑘𝐵 · 𝐶)
87a1i 11 . 2 (𝜑 → (Σ𝑘𝐴 𝐵 · 𝐶) = (Σ𝑗𝐴 𝑗 / 𝑘𝐵 · 𝐶))
9 fsummulclf.a . . 3 (𝜑𝐴 ∈ Fin)
10 fsummulclf.c . . 3 (𝜑𝐶 ∈ ℂ)
11 fsummulc1f.ph . . . . . 6 𝑘𝜑
12 nfv 1918 . . . . . 6 𝑘 𝑗𝐴
1311, 12nfan 1903 . . . . 5 𝑘(𝜑𝑗𝐴)
145nfel1 2920 . . . . 5 𝑘𝑗 / 𝑘𝐵 ∈ ℂ
1513, 14nfim 1900 . . . 4 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
16 eleq1w 2817 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
1716anbi2d 630 . . . . 5 (𝑘 = 𝑗 → ((𝜑𝑘𝐴) ↔ (𝜑𝑗𝐴)))
181eleq1d 2819 . . . . 5 (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑘𝐵 ∈ ℂ))
1917, 18imbi12d 345 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)))
20 fsummulclf.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2115, 19, 20chvarfv 2234 . . 3 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
229, 10, 21fsummulc1 15727 . 2 (𝜑 → (Σ𝑗𝐴 𝑗 / 𝑘𝐵 · 𝐶) = Σ𝑗𝐴 (𝑗 / 𝑘𝐵 · 𝐶))
23 eqcom 2740 . . . . . . . 8 (𝑘 = 𝑗𝑗 = 𝑘)
2423imbi1i 350 . . . . . . 7 ((𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵) ↔ (𝑗 = 𝑘𝐵 = 𝑗 / 𝑘𝐵))
25 eqcom 2740 . . . . . . . 8 (𝐵 = 𝑗 / 𝑘𝐵𝑗 / 𝑘𝐵 = 𝐵)
2625imbi2i 336 . . . . . . 7 ((𝑗 = 𝑘𝐵 = 𝑗 / 𝑘𝐵) ↔ (𝑗 = 𝑘𝑗 / 𝑘𝐵 = 𝐵))
2724, 26bitri 275 . . . . . 6 ((𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵) ↔ (𝑗 = 𝑘𝑗 / 𝑘𝐵 = 𝐵))
281, 27mpbi 229 . . . . 5 (𝑗 = 𝑘𝑗 / 𝑘𝐵 = 𝐵)
2928oveq1d 7419 . . . 4 (𝑗 = 𝑘 → (𝑗 / 𝑘𝐵 · 𝐶) = (𝐵 · 𝐶))
30 nfcv 2904 . . . . 5 𝑘 ·
31 nfcv 2904 . . . . 5 𝑘𝐶
325, 30, 31nfov 7434 . . . 4 𝑘(𝑗 / 𝑘𝐵 · 𝐶)
33 nfcv 2904 . . . 4 𝑗(𝐵 · 𝐶)
3429, 3, 2, 32, 33cbvsum 15637 . . 3 Σ𝑗𝐴 (𝑗 / 𝑘𝐵 · 𝐶) = Σ𝑘𝐴 (𝐵 · 𝐶)
3534a1i 11 . 2 (𝜑 → Σ𝑗𝐴 (𝑗 / 𝑘𝐵 · 𝐶) = Σ𝑘𝐴 (𝐵 · 𝐶))
368, 22, 353eqtrd 2777 1 (𝜑 → (Σ𝑘𝐴 𝐵 · 𝐶) = Σ𝑘𝐴 (𝐵 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wnf 1786  wcel 2107  csb 3892  (class class class)co 7404  Fincfn 8935  cc 11104   · cmul 11111  Σcsu 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629
This theorem is referenced by:  dvmptfprodlem  44595
  Copyright terms: Public domain W3C validator