Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsummulc1f Structured version   Visualization version   GIF version

Theorem fsummulc1f 45733
Description: Closure of a finite sum of complex numbers 𝐴(𝑘). A version of fsummulc1 15699 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fsummulc1f.ph 𝑘𝜑
fsummulclf.a (𝜑𝐴 ∈ Fin)
fsummulclf.c (𝜑𝐶 ∈ ℂ)
fsummulclf.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsummulc1f (𝜑 → (Σ𝑘𝐴 𝐵 · 𝐶) = Σ𝑘𝐴 (𝐵 · 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fsummulc1f
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3860 . . . . 5 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
2 nfcv 2895 . . . . 5 𝑗𝐵
3 nfcsb1v 3870 . . . . 5 𝑘𝑗 / 𝑘𝐵
41, 2, 3cbvsum 15609 . . . 4 Σ𝑘𝐴 𝐵 = Σ𝑗𝐴 𝑗 / 𝑘𝐵
54oveq1i 7365 . . 3 𝑘𝐴 𝐵 · 𝐶) = (Σ𝑗𝐴 𝑗 / 𝑘𝐵 · 𝐶)
65a1i 11 . 2 (𝜑 → (Σ𝑘𝐴 𝐵 · 𝐶) = (Σ𝑗𝐴 𝑗 / 𝑘𝐵 · 𝐶))
7 fsummulclf.a . . 3 (𝜑𝐴 ∈ Fin)
8 fsummulclf.c . . 3 (𝜑𝐶 ∈ ℂ)
9 fsummulc1f.ph . . . . . 6 𝑘𝜑
10 nfv 1915 . . . . . 6 𝑘 𝑗𝐴
119, 10nfan 1900 . . . . 5 𝑘(𝜑𝑗𝐴)
123nfel1 2912 . . . . 5 𝑘𝑗 / 𝑘𝐵 ∈ ℂ
1311, 12nfim 1897 . . . 4 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
14 eleq1w 2816 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
1514anbi2d 630 . . . . 5 (𝑘 = 𝑗 → ((𝜑𝑘𝐴) ↔ (𝜑𝑗𝐴)))
161eleq1d 2818 . . . . 5 (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑘𝐵 ∈ ℂ))
1715, 16imbi12d 344 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)))
18 fsummulclf.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1913, 17, 18chvarfv 2245 . . 3 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
207, 8, 19fsummulc1 15699 . 2 (𝜑 → (Σ𝑗𝐴 𝑗 / 𝑘𝐵 · 𝐶) = Σ𝑗𝐴 (𝑗 / 𝑘𝐵 · 𝐶))
21 eqcom 2740 . . . . . . . 8 (𝑘 = 𝑗𝑗 = 𝑘)
2221imbi1i 349 . . . . . . 7 ((𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵) ↔ (𝑗 = 𝑘𝐵 = 𝑗 / 𝑘𝐵))
23 eqcom 2740 . . . . . . . 8 (𝐵 = 𝑗 / 𝑘𝐵𝑗 / 𝑘𝐵 = 𝐵)
2423imbi2i 336 . . . . . . 7 ((𝑗 = 𝑘𝐵 = 𝑗 / 𝑘𝐵) ↔ (𝑗 = 𝑘𝑗 / 𝑘𝐵 = 𝐵))
2522, 24bitri 275 . . . . . 6 ((𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵) ↔ (𝑗 = 𝑘𝑗 / 𝑘𝐵 = 𝐵))
261, 25mpbi 230 . . . . 5 (𝑗 = 𝑘𝑗 / 𝑘𝐵 = 𝐵)
2726oveq1d 7370 . . . 4 (𝑗 = 𝑘 → (𝑗 / 𝑘𝐵 · 𝐶) = (𝐵 · 𝐶))
28 nfcv 2895 . . . . 5 𝑘 ·
29 nfcv 2895 . . . . 5 𝑘𝐶
303, 28, 29nfov 7385 . . . 4 𝑘(𝑗 / 𝑘𝐵 · 𝐶)
31 nfcv 2895 . . . 4 𝑗(𝐵 · 𝐶)
3227, 30, 31cbvsum 15609 . . 3 Σ𝑗𝐴 (𝑗 / 𝑘𝐵 · 𝐶) = Σ𝑘𝐴 (𝐵 · 𝐶)
3332a1i 11 . 2 (𝜑 → Σ𝑗𝐴 (𝑗 / 𝑘𝐵 · 𝐶) = Σ𝑘𝐴 (𝐵 · 𝐶))
346, 20, 333eqtrd 2772 1 (𝜑 → (Σ𝑘𝐴 𝐵 · 𝐶) = Σ𝑘𝐴 (𝐵 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2113  csb 3846  (class class class)co 7355  Fincfn 8879  cc 11015   · cmul 11022  Σcsu 15600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-fz 13415  df-fzo 13562  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-sum 15601
This theorem is referenced by:  dvmptfprodlem  46104
  Copyright terms: Public domain W3C validator