Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsummulc1f | Structured version Visualization version GIF version |
Description: Closure of a finite sum of complex numbers 𝐴(𝑘). A version of fsummulc1 15497 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
fsummulc1f.ph | ⊢ Ⅎ𝑘𝜑 |
fsummulclf.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsummulclf.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
fsummulclf.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
fsummulc1f | ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1a 3846 | . . . . 5 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
2 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑗𝐴 | |
3 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
4 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑗𝐵 | |
5 | nfcsb1v 3857 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 | |
6 | 1, 2, 3, 4, 5 | cbvsum 15407 | . . . 4 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 |
7 | 6 | oveq1i 7285 | . . 3 ⊢ (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = (Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 · 𝐶) |
8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = (Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 · 𝐶)) |
9 | fsummulclf.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
10 | fsummulclf.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
11 | fsummulc1f.ph | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
12 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑘 𝑗 ∈ 𝐴 | |
13 | 11, 12 | nfan 1902 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝐴) |
14 | 5 | nfel1 2923 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ |
15 | 13, 14 | nfim 1899 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
16 | eleq1w 2821 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) | |
17 | 16 | anbi2d 629 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑗 ∈ 𝐴))) |
18 | 1 | eleq1d 2823 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ)) |
19 | 17, 18 | imbi12d 345 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ))) |
20 | fsummulclf.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
21 | 15, 19, 20 | chvarfv 2233 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
22 | 9, 10, 21 | fsummulc1 15497 | . 2 ⊢ (𝜑 → (Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 · 𝐶) = Σ𝑗 ∈ 𝐴 (⦋𝑗 / 𝑘⦌𝐵 · 𝐶)) |
23 | eqcom 2745 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 ↔ 𝑗 = 𝑘) | |
24 | 23 | imbi1i 350 | . . . . . . 7 ⊢ ((𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) ↔ (𝑗 = 𝑘 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵)) |
25 | eqcom 2745 | . . . . . . . 8 ⊢ (𝐵 = ⦋𝑗 / 𝑘⦌𝐵 ↔ ⦋𝑗 / 𝑘⦌𝐵 = 𝐵) | |
26 | 25 | imbi2i 336 | . . . . . . 7 ⊢ ((𝑗 = 𝑘 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) ↔ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐵 = 𝐵)) |
27 | 24, 26 | bitri 274 | . . . . . 6 ⊢ ((𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) ↔ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐵 = 𝐵)) |
28 | 1, 27 | mpbi 229 | . . . . 5 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐵 = 𝐵) |
29 | 28 | oveq1d 7290 | . . . 4 ⊢ (𝑗 = 𝑘 → (⦋𝑗 / 𝑘⦌𝐵 · 𝐶) = (𝐵 · 𝐶)) |
30 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑘 · | |
31 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑘𝐶 | |
32 | 5, 30, 31 | nfov 7305 | . . . 4 ⊢ Ⅎ𝑘(⦋𝑗 / 𝑘⦌𝐵 · 𝐶) |
33 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑗(𝐵 · 𝐶) | |
34 | 29, 3, 2, 32, 33 | cbvsum 15407 | . . 3 ⊢ Σ𝑗 ∈ 𝐴 (⦋𝑗 / 𝑘⦌𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶) |
35 | 34 | a1i 11 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 (⦋𝑗 / 𝑘⦌𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)) |
36 | 8, 22, 35 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 ⦋csb 3832 (class class class)co 7275 Fincfn 8733 ℂcc 10869 · cmul 10876 Σcsu 15397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 |
This theorem is referenced by: dvmptfprodlem 43485 |
Copyright terms: Public domain | W3C validator |