| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsummulc1f | Structured version Visualization version GIF version | ||
| Description: Closure of a finite sum of complex numbers 𝐴(𝑘). A version of fsummulc1 15687 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fsummulc1f.ph | ⊢ Ⅎ𝑘𝜑 |
| fsummulclf.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsummulclf.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| fsummulclf.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| fsummulc1f | ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1a 3859 | . . . . 5 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
| 2 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑗𝐵 | |
| 3 | nfcsb1v 3869 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 | |
| 4 | 1, 2, 3 | cbvsum 15597 | . . . 4 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 |
| 5 | 4 | oveq1i 7351 | . . 3 ⊢ (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = (Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 · 𝐶) |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = (Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 · 𝐶)) |
| 7 | fsummulclf.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 8 | fsummulclf.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 9 | fsummulc1f.ph | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
| 10 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑘 𝑗 ∈ 𝐴 | |
| 11 | 9, 10 | nfan 1900 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝐴) |
| 12 | 3 | nfel1 2911 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ |
| 13 | 11, 12 | nfim 1897 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
| 14 | eleq1w 2814 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) | |
| 15 | 14 | anbi2d 630 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑗 ∈ 𝐴))) |
| 16 | 1 | eleq1d 2816 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ)) |
| 17 | 15, 16 | imbi12d 344 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ))) |
| 18 | fsummulclf.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 19 | 13, 17, 18 | chvarfv 2243 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
| 20 | 7, 8, 19 | fsummulc1 15687 | . 2 ⊢ (𝜑 → (Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 · 𝐶) = Σ𝑗 ∈ 𝐴 (⦋𝑗 / 𝑘⦌𝐵 · 𝐶)) |
| 21 | eqcom 2738 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 ↔ 𝑗 = 𝑘) | |
| 22 | 21 | imbi1i 349 | . . . . . . 7 ⊢ ((𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) ↔ (𝑗 = 𝑘 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵)) |
| 23 | eqcom 2738 | . . . . . . . 8 ⊢ (𝐵 = ⦋𝑗 / 𝑘⦌𝐵 ↔ ⦋𝑗 / 𝑘⦌𝐵 = 𝐵) | |
| 24 | 23 | imbi2i 336 | . . . . . . 7 ⊢ ((𝑗 = 𝑘 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) ↔ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐵 = 𝐵)) |
| 25 | 22, 24 | bitri 275 | . . . . . 6 ⊢ ((𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) ↔ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐵 = 𝐵)) |
| 26 | 1, 25 | mpbi 230 | . . . . 5 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐵 = 𝐵) |
| 27 | 26 | oveq1d 7356 | . . . 4 ⊢ (𝑗 = 𝑘 → (⦋𝑗 / 𝑘⦌𝐵 · 𝐶) = (𝐵 · 𝐶)) |
| 28 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑘 · | |
| 29 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑘𝐶 | |
| 30 | 3, 28, 29 | nfov 7371 | . . . 4 ⊢ Ⅎ𝑘(⦋𝑗 / 𝑘⦌𝐵 · 𝐶) |
| 31 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑗(𝐵 · 𝐶) | |
| 32 | 27, 30, 31 | cbvsum 15597 | . . 3 ⊢ Σ𝑗 ∈ 𝐴 (⦋𝑗 / 𝑘⦌𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶) |
| 33 | 32 | a1i 11 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 (⦋𝑗 / 𝑘⦌𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)) |
| 34 | 6, 20, 33 | 3eqtrd 2770 | 1 ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 ⦋csb 3845 (class class class)co 7341 Fincfn 8864 ℂcc 10999 · cmul 11006 Σcsu 15588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-fz 13403 df-fzo 13550 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-sum 15589 |
| This theorem is referenced by: dvmptfprodlem 45982 |
| Copyright terms: Public domain | W3C validator |