| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsummulc1f | Structured version Visualization version GIF version | ||
| Description: Closure of a finite sum of complex numbers 𝐴(𝑘). A version of fsummulc1 15699 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fsummulc1f.ph | ⊢ Ⅎ𝑘𝜑 |
| fsummulclf.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsummulclf.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| fsummulclf.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| fsummulc1f | ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1a 3860 | . . . . 5 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
| 2 | nfcv 2895 | . . . . 5 ⊢ Ⅎ𝑗𝐵 | |
| 3 | nfcsb1v 3870 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 | |
| 4 | 1, 2, 3 | cbvsum 15609 | . . . 4 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 |
| 5 | 4 | oveq1i 7365 | . . 3 ⊢ (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = (Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 · 𝐶) |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = (Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 · 𝐶)) |
| 7 | fsummulclf.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 8 | fsummulclf.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 9 | fsummulc1f.ph | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
| 10 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑘 𝑗 ∈ 𝐴 | |
| 11 | 9, 10 | nfan 1900 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝐴) |
| 12 | 3 | nfel1 2912 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ |
| 13 | 11, 12 | nfim 1897 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
| 14 | eleq1w 2816 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) | |
| 15 | 14 | anbi2d 630 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑗 ∈ 𝐴))) |
| 16 | 1 | eleq1d 2818 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ)) |
| 17 | 15, 16 | imbi12d 344 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ))) |
| 18 | fsummulclf.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 19 | 13, 17, 18 | chvarfv 2245 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
| 20 | 7, 8, 19 | fsummulc1 15699 | . 2 ⊢ (𝜑 → (Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 · 𝐶) = Σ𝑗 ∈ 𝐴 (⦋𝑗 / 𝑘⦌𝐵 · 𝐶)) |
| 21 | eqcom 2740 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 ↔ 𝑗 = 𝑘) | |
| 22 | 21 | imbi1i 349 | . . . . . . 7 ⊢ ((𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) ↔ (𝑗 = 𝑘 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵)) |
| 23 | eqcom 2740 | . . . . . . . 8 ⊢ (𝐵 = ⦋𝑗 / 𝑘⦌𝐵 ↔ ⦋𝑗 / 𝑘⦌𝐵 = 𝐵) | |
| 24 | 23 | imbi2i 336 | . . . . . . 7 ⊢ ((𝑗 = 𝑘 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) ↔ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐵 = 𝐵)) |
| 25 | 22, 24 | bitri 275 | . . . . . 6 ⊢ ((𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) ↔ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐵 = 𝐵)) |
| 26 | 1, 25 | mpbi 230 | . . . . 5 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐵 = 𝐵) |
| 27 | 26 | oveq1d 7370 | . . . 4 ⊢ (𝑗 = 𝑘 → (⦋𝑗 / 𝑘⦌𝐵 · 𝐶) = (𝐵 · 𝐶)) |
| 28 | nfcv 2895 | . . . . 5 ⊢ Ⅎ𝑘 · | |
| 29 | nfcv 2895 | . . . . 5 ⊢ Ⅎ𝑘𝐶 | |
| 30 | 3, 28, 29 | nfov 7385 | . . . 4 ⊢ Ⅎ𝑘(⦋𝑗 / 𝑘⦌𝐵 · 𝐶) |
| 31 | nfcv 2895 | . . . 4 ⊢ Ⅎ𝑗(𝐵 · 𝐶) | |
| 32 | 27, 30, 31 | cbvsum 15609 | . . 3 ⊢ Σ𝑗 ∈ 𝐴 (⦋𝑗 / 𝑘⦌𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶) |
| 33 | 32 | a1i 11 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 (⦋𝑗 / 𝑘⦌𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)) |
| 34 | 6, 20, 33 | 3eqtrd 2772 | 1 ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2113 ⦋csb 3846 (class class class)co 7355 Fincfn 8879 ℂcc 11015 · cmul 11022 Σcsu 15600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-fz 13415 df-fzo 13562 df-seq 13916 df-exp 13976 df-hash 14245 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-clim 15402 df-sum 15601 |
| This theorem is referenced by: dvmptfprodlem 46104 |
| Copyright terms: Public domain | W3C validator |