MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliun2 Structured version   Visualization version   GIF version

Theorem ovoliun2 23826
Description: The Lebesgue outer measure function is countably sub-additive. (This version is a little easier to read, but does not allow infinite values like ovoliun 23825.) (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovoliun.t 𝑇 = seq1( + , 𝐺)
ovoliun.g 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
ovoliun.a ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
ovoliun.v ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
ovoliun2.t (𝜑𝑇 ∈ dom ⇝ )
Assertion
Ref Expression
ovoliun2 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ Σ𝑛 ∈ ℕ (vol*‘𝐴))
Distinct variable group:   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑇(𝑛)   𝐺(𝑛)

Proof of Theorem ovoliun2
Dummy variables 𝑘 𝑚 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovoliun.t . . 3 𝑇 = seq1( + , 𝐺)
2 ovoliun.g . . 3 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
3 ovoliun.a . . 3 ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
4 ovoliun.v . . 3 ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
51, 2, 3, 4ovoliun 23825 . 2 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
6 nnuz 12094 . . . . . . . 8 ℕ = (ℤ‘1)
7 1zzd 11825 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
8 fvex 6510 . . . . . . . . . . 11 (vol*‘𝑚 / 𝑛𝐴) ∈ V
9 nfcv 2927 . . . . . . . . . . . . . 14 𝑚(vol*‘𝐴)
10 nfcv 2927 . . . . . . . . . . . . . . 15 𝑛vol*
11 nfcsb1v 3799 . . . . . . . . . . . . . . 15 𝑛𝑚 / 𝑛𝐴
1210, 11nffv 6507 . . . . . . . . . . . . . 14 𝑛(vol*‘𝑚 / 𝑛𝐴)
13 csbeq1a 3790 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
1413fveq2d 6501 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → (vol*‘𝐴) = (vol*‘𝑚 / 𝑛𝐴))
159, 12, 14cbvmpt 5024 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) = (𝑚 ∈ ℕ ↦ (vol*‘𝑚 / 𝑛𝐴))
162, 15eqtri 2797 . . . . . . . . . . . 12 𝐺 = (𝑚 ∈ ℕ ↦ (vol*‘𝑚 / 𝑛𝐴))
1716fvmpt2 6604 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (vol*‘𝑚 / 𝑛𝐴) ∈ V) → (𝐺𝑚) = (vol*‘𝑚 / 𝑛𝐴))
188, 17mpan2 679 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝐺𝑚) = (vol*‘𝑚 / 𝑛𝐴))
1918adantl 474 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) = (vol*‘𝑚 / 𝑛𝐴))
204ralrimiva 3127 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ)
219nfel1 2941 . . . . . . . . . . . 12 𝑚(vol*‘𝐴) ∈ ℝ
2212nfel1 2941 . . . . . . . . . . . 12 𝑛(vol*‘𝑚 / 𝑛𝐴) ∈ ℝ
2314eleq1d 2845 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((vol*‘𝐴) ∈ ℝ ↔ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ))
2421, 22, 23cbvral 3374 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ ↔ ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
2520, 24sylib 210 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
2625r19.21bi 3153 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
2719, 26eqeltrd 2861 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) ∈ ℝ)
286, 7, 27serfre 13213 . . . . . . 7 (𝜑 → seq1( + , 𝐺):ℕ⟶ℝ)
291feq1i 6333 . . . . . . 7 (𝑇:ℕ⟶ℝ ↔ seq1( + , 𝐺):ℕ⟶ℝ)
3028, 29sylibr 226 . . . . . 6 (𝜑𝑇:ℕ⟶ℝ)
3130frnd 6349 . . . . 5 (𝜑 → ran 𝑇 ⊆ ℝ)
32 1nn 11451 . . . . . . . 8 1 ∈ ℕ
3330fdmd 6351 . . . . . . . 8 (𝜑 → dom 𝑇 = ℕ)
3432, 33syl5eleqr 2868 . . . . . . 7 (𝜑 → 1 ∈ dom 𝑇)
3534ne0d 4182 . . . . . 6 (𝜑 → dom 𝑇 ≠ ∅)
36 dm0rn0 5638 . . . . . . 7 (dom 𝑇 = ∅ ↔ ran 𝑇 = ∅)
3736necon3bii 3014 . . . . . 6 (dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅)
3835, 37sylib 210 . . . . 5 (𝜑 → ran 𝑇 ≠ ∅)
39 ovoliun2.t . . . . . . . . 9 (𝜑𝑇 ∈ dom ⇝ )
401, 39syl5eqelr 2866 . . . . . . . 8 (𝜑 → seq1( + , 𝐺) ∈ dom ⇝ )
416, 7, 19, 26, 40isumrecl 14979 . . . . . . 7 (𝜑 → Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
42 elfznn 12751 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑘) → 𝑚 ∈ ℕ)
4342adantl 474 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → 𝑚 ∈ ℕ)
4443, 18syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (𝐺𝑚) = (vol*‘𝑚 / 𝑛𝐴))
45 simpr 477 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
4645, 6syl6eleq 2871 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
47 simpl 475 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝜑)
4847, 42, 26syl2an 587 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
4948recnd 10467 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℂ)
5044, 46, 49fsumser 14946 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(vol*‘𝑚 / 𝑛𝐴) = (seq1( + , 𝐺)‘𝑘))
511fveq1i 6498 . . . . . . . . . 10 (𝑇𝑘) = (seq1( + , 𝐺)‘𝑘)
5250, 51syl6eqr 2827 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(vol*‘𝑚 / 𝑛𝐴) = (𝑇𝑘))
53 fzfid 13155 . . . . . . . . . . 11 (𝜑 → (1...𝑘) ∈ Fin)
54 fz1ssnn 12753 . . . . . . . . . . . 12 (1...𝑘) ⊆ ℕ
5554a1i 11 . . . . . . . . . . 11 (𝜑 → (1...𝑘) ⊆ ℕ)
563ralrimiva 3127 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ)
57 nfv 1874 . . . . . . . . . . . . . . 15 𝑚 𝐴 ⊆ ℝ
58 nfcv 2927 . . . . . . . . . . . . . . . 16 𝑛
5911, 58nfss 3846 . . . . . . . . . . . . . . 15 𝑛𝑚 / 𝑛𝐴 ⊆ ℝ
6013sseq1d 3883 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐴 ⊆ ℝ ↔ 𝑚 / 𝑛𝐴 ⊆ ℝ))
6157, 59, 60cbvral 3374 . . . . . . . . . . . . . 14 (∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ ↔ ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
6256, 61sylib 210 . . . . . . . . . . . . 13 (𝜑 → ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
6362r19.21bi 3153 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝑚 / 𝑛𝐴 ⊆ ℝ)
64 ovolge0 23801 . . . . . . . . . . . 12 (𝑚 / 𝑛𝐴 ⊆ ℝ → 0 ≤ (vol*‘𝑚 / 𝑛𝐴))
6563, 64syl 17 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 0 ≤ (vol*‘𝑚 / 𝑛𝐴))
666, 7, 53, 55, 19, 26, 65, 40isumless 15059 . . . . . . . . . 10 (𝜑 → Σ𝑚 ∈ (1...𝑘)(vol*‘𝑚 / 𝑛𝐴) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
6766adantr 473 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(vol*‘𝑚 / 𝑛𝐴) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
6852, 67eqbrtrrd 4950 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑇𝑘) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
6968ralrimiva 3127 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
70 brralrspcev 4986 . . . . . . 7 ((Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ ∧ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥)
7141, 69, 70syl2anc 576 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥)
7230ffnd 6343 . . . . . . . 8 (𝜑𝑇 Fn ℕ)
73 breq1 4929 . . . . . . . . 9 (𝑧 = (𝑇𝑘) → (𝑧𝑥 ↔ (𝑇𝑘) ≤ 𝑥))
7473ralrn 6678 . . . . . . . 8 (𝑇 Fn ℕ → (∀𝑧 ∈ ran 𝑇 𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥))
7572, 74syl 17 . . . . . . 7 (𝜑 → (∀𝑧 ∈ ran 𝑇 𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥))
7675rexbidv 3237 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑇 𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥))
7771, 76mpbird 249 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑇 𝑧𝑥)
78 supxrre 12535 . . . . 5 ((ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑇 𝑧𝑥) → sup(ran 𝑇, ℝ*, < ) = sup(ran 𝑇, ℝ, < ))
7931, 38, 77, 78syl3anc 1352 . . . 4 (𝜑 → sup(ran 𝑇, ℝ*, < ) = sup(ran 𝑇, ℝ, < ))
806, 1, 7, 19, 26, 65, 71isumsup 15061 . . . 4 (𝜑 → Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) = sup(ran 𝑇, ℝ, < ))
8179, 80eqtr4d 2812 . . 3 (𝜑 → sup(ran 𝑇, ℝ*, < ) = Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
829, 12, 14cbvsumi 14913 . . 3 Σ𝑛 ∈ ℕ (vol*‘𝐴) = Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴)
8381, 82syl6eqr 2827 . 2 (𝜑 → sup(ran 𝑇, ℝ*, < ) = Σ𝑛 ∈ ℕ (vol*‘𝐴))
845, 83breqtrd 4952 1 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ Σ𝑛 ∈ ℕ (vol*‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1508  wcel 2051  wne 2962  wral 3083  wrex 3084  Vcvv 3410  csb 3781  wss 3824  c0 4173   ciun 4789   class class class wbr 4926  cmpt 5005  dom cdm 5404  ran crn 5405   Fn wfn 6181  wf 6182  cfv 6186  (class class class)co 6975  supcsup 8698  cr 10333  0cc0 10334  1c1 10335   + caddc 10337  *cxr 10472   < clt 10473  cle 10474  cn 11438  cuz 12057  ...cfz 12707  seqcseq 13183  cli 14701  Σcsu 14902  vol*covol 23782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-inf2 8897  ax-cc 9654  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411  ax-pre-sup 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-int 4747  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-se 5364  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-isom 6195  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-1st 7500  df-2nd 7501  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-1o 7904  df-oadd 7908  df-er 8088  df-map 8207  df-pm 8208  df-en 8306  df-dom 8307  df-sdom 8308  df-fin 8309  df-sup 8700  df-inf 8701  df-oi 8768  df-card 9161  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-div 11098  df-nn 11439  df-2 11502  df-3 11503  df-n0 11707  df-z 11793  df-uz 12058  df-q 12162  df-rp 12204  df-ioo 12557  df-ico 12559  df-fz 12708  df-fzo 12849  df-fl 12976  df-seq 13184  df-exp 13244  df-hash 13505  df-cj 14318  df-re 14319  df-im 14320  df-sqrt 14454  df-abs 14455  df-clim 14705  df-rlim 14706  df-sum 14903  df-ovol 23784
This theorem is referenced by:  ovoliunnul  23827  vitalilem5  23932
  Copyright terms: Public domain W3C validator