MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliun2 Structured version   Visualization version   GIF version

Theorem ovoliun2 24575
Description: The Lebesgue outer measure function is countably sub-additive. (This version is a little easier to read, but does not allow infinite values like ovoliun 24574.) (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovoliun.t 𝑇 = seq1( + , 𝐺)
ovoliun.g 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
ovoliun.a ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
ovoliun.v ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
ovoliun2.t (𝜑𝑇 ∈ dom ⇝ )
Assertion
Ref Expression
ovoliun2 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ Σ𝑛 ∈ ℕ (vol*‘𝐴))
Distinct variable group:   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑇(𝑛)   𝐺(𝑛)

Proof of Theorem ovoliun2
Dummy variables 𝑘 𝑚 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovoliun.t . . 3 𝑇 = seq1( + , 𝐺)
2 ovoliun.g . . 3 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
3 ovoliun.a . . 3 ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
4 ovoliun.v . . 3 ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
51, 2, 3, 4ovoliun 24574 . 2 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
6 nnuz 12550 . . . . . . . 8 ℕ = (ℤ‘1)
7 1zzd 12281 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
8 fvex 6769 . . . . . . . . . . 11 (vol*‘𝑚 / 𝑛𝐴) ∈ V
9 nfcv 2906 . . . . . . . . . . . . . 14 𝑚(vol*‘𝐴)
10 nfcv 2906 . . . . . . . . . . . . . . 15 𝑛vol*
11 nfcsb1v 3853 . . . . . . . . . . . . . . 15 𝑛𝑚 / 𝑛𝐴
1210, 11nffv 6766 . . . . . . . . . . . . . 14 𝑛(vol*‘𝑚 / 𝑛𝐴)
13 csbeq1a 3842 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
1413fveq2d 6760 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → (vol*‘𝐴) = (vol*‘𝑚 / 𝑛𝐴))
159, 12, 14cbvmpt 5181 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) = (𝑚 ∈ ℕ ↦ (vol*‘𝑚 / 𝑛𝐴))
162, 15eqtri 2766 . . . . . . . . . . . 12 𝐺 = (𝑚 ∈ ℕ ↦ (vol*‘𝑚 / 𝑛𝐴))
1716fvmpt2 6868 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (vol*‘𝑚 / 𝑛𝐴) ∈ V) → (𝐺𝑚) = (vol*‘𝑚 / 𝑛𝐴))
188, 17mpan2 687 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝐺𝑚) = (vol*‘𝑚 / 𝑛𝐴))
1918adantl 481 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) = (vol*‘𝑚 / 𝑛𝐴))
204ralrimiva 3107 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ)
219nfel1 2922 . . . . . . . . . . . 12 𝑚(vol*‘𝐴) ∈ ℝ
2212nfel1 2922 . . . . . . . . . . . 12 𝑛(vol*‘𝑚 / 𝑛𝐴) ∈ ℝ
2314eleq1d 2823 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((vol*‘𝐴) ∈ ℝ ↔ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ))
2421, 22, 23cbvralw 3363 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ ↔ ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
2520, 24sylib 217 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
2625r19.21bi 3132 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
2719, 26eqeltrd 2839 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) ∈ ℝ)
286, 7, 27serfre 13680 . . . . . . 7 (𝜑 → seq1( + , 𝐺):ℕ⟶ℝ)
291feq1i 6575 . . . . . . 7 (𝑇:ℕ⟶ℝ ↔ seq1( + , 𝐺):ℕ⟶ℝ)
3028, 29sylibr 233 . . . . . 6 (𝜑𝑇:ℕ⟶ℝ)
3130frnd 6592 . . . . 5 (𝜑 → ran 𝑇 ⊆ ℝ)
32 1nn 11914 . . . . . . . 8 1 ∈ ℕ
3330fdmd 6595 . . . . . . . 8 (𝜑 → dom 𝑇 = ℕ)
3432, 33eleqtrrid 2846 . . . . . . 7 (𝜑 → 1 ∈ dom 𝑇)
3534ne0d 4266 . . . . . 6 (𝜑 → dom 𝑇 ≠ ∅)
36 dm0rn0 5823 . . . . . . 7 (dom 𝑇 = ∅ ↔ ran 𝑇 = ∅)
3736necon3bii 2995 . . . . . 6 (dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅)
3835, 37sylib 217 . . . . 5 (𝜑 → ran 𝑇 ≠ ∅)
39 ovoliun2.t . . . . . . . . 9 (𝜑𝑇 ∈ dom ⇝ )
401, 39eqeltrrid 2844 . . . . . . . 8 (𝜑 → seq1( + , 𝐺) ∈ dom ⇝ )
416, 7, 19, 26, 40isumrecl 15405 . . . . . . 7 (𝜑 → Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
42 elfznn 13214 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑘) → 𝑚 ∈ ℕ)
4342adantl 481 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → 𝑚 ∈ ℕ)
4443, 18syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (𝐺𝑚) = (vol*‘𝑚 / 𝑛𝐴))
45 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
4645, 6eleqtrdi 2849 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
47 simpl 482 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝜑)
4847, 42, 26syl2an 595 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
4948recnd 10934 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℂ)
5044, 46, 49fsumser 15370 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(vol*‘𝑚 / 𝑛𝐴) = (seq1( + , 𝐺)‘𝑘))
511fveq1i 6757 . . . . . . . . . 10 (𝑇𝑘) = (seq1( + , 𝐺)‘𝑘)
5250, 51eqtr4di 2797 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(vol*‘𝑚 / 𝑛𝐴) = (𝑇𝑘))
53 fzfid 13621 . . . . . . . . . . 11 (𝜑 → (1...𝑘) ∈ Fin)
54 fz1ssnn 13216 . . . . . . . . . . . 12 (1...𝑘) ⊆ ℕ
5554a1i 11 . . . . . . . . . . 11 (𝜑 → (1...𝑘) ⊆ ℕ)
563ralrimiva 3107 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ)
57 nfv 1918 . . . . . . . . . . . . . . 15 𝑚 𝐴 ⊆ ℝ
58 nfcv 2906 . . . . . . . . . . . . . . . 16 𝑛
5911, 58nfss 3909 . . . . . . . . . . . . . . 15 𝑛𝑚 / 𝑛𝐴 ⊆ ℝ
6013sseq1d 3948 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐴 ⊆ ℝ ↔ 𝑚 / 𝑛𝐴 ⊆ ℝ))
6157, 59, 60cbvralw 3363 . . . . . . . . . . . . . 14 (∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ ↔ ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
6256, 61sylib 217 . . . . . . . . . . . . 13 (𝜑 → ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
6362r19.21bi 3132 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝑚 / 𝑛𝐴 ⊆ ℝ)
64 ovolge0 24550 . . . . . . . . . . . 12 (𝑚 / 𝑛𝐴 ⊆ ℝ → 0 ≤ (vol*‘𝑚 / 𝑛𝐴))
6563, 64syl 17 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 0 ≤ (vol*‘𝑚 / 𝑛𝐴))
666, 7, 53, 55, 19, 26, 65, 40isumless 15485 . . . . . . . . . 10 (𝜑 → Σ𝑚 ∈ (1...𝑘)(vol*‘𝑚 / 𝑛𝐴) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
6766adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(vol*‘𝑚 / 𝑛𝐴) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
6852, 67eqbrtrrd 5094 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑇𝑘) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
6968ralrimiva 3107 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
70 brralrspcev 5130 . . . . . . 7 ((Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ ∧ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥)
7141, 69, 70syl2anc 583 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥)
7230ffnd 6585 . . . . . . . 8 (𝜑𝑇 Fn ℕ)
73 breq1 5073 . . . . . . . . 9 (𝑧 = (𝑇𝑘) → (𝑧𝑥 ↔ (𝑇𝑘) ≤ 𝑥))
7473ralrn 6946 . . . . . . . 8 (𝑇 Fn ℕ → (∀𝑧 ∈ ran 𝑇 𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥))
7572, 74syl 17 . . . . . . 7 (𝜑 → (∀𝑧 ∈ ran 𝑇 𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥))
7675rexbidv 3225 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑇 𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥))
7771, 76mpbird 256 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑇 𝑧𝑥)
78 supxrre 12990 . . . . 5 ((ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑇 𝑧𝑥) → sup(ran 𝑇, ℝ*, < ) = sup(ran 𝑇, ℝ, < ))
7931, 38, 77, 78syl3anc 1369 . . . 4 (𝜑 → sup(ran 𝑇, ℝ*, < ) = sup(ran 𝑇, ℝ, < ))
806, 1, 7, 19, 26, 65, 71isumsup 15487 . . . 4 (𝜑 → Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) = sup(ran 𝑇, ℝ, < ))
8179, 80eqtr4d 2781 . . 3 (𝜑 → sup(ran 𝑇, ℝ*, < ) = Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
829, 12, 14cbvsumi 15337 . . 3 Σ𝑛 ∈ ℕ (vol*‘𝐴) = Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴)
8381, 82eqtr4di 2797 . 2 (𝜑 → sup(ran 𝑇, ℝ*, < ) = Σ𝑛 ∈ ℕ (vol*‘𝐴))
845, 83breqtrd 5096 1 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ Σ𝑛 ∈ ℕ (vol*‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  csb 3828  wss 3883  c0 4253   ciun 4921   class class class wbr 5070  cmpt 5153  dom cdm 5580  ran crn 5581   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  supcsup 9129  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  *cxr 10939   < clt 10940  cle 10941  cn 11903  cuz 12511  ...cfz 13168  seqcseq 13649  cli 15121  Σcsu 15325  vol*covol 24531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-ioo 13012  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-ovol 24533
This theorem is referenced by:  ovoliunnul  24576  vitalilem5  24681
  Copyright terms: Public domain W3C validator