MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliun2 Structured version   Visualization version   GIF version

Theorem ovoliun2 25541
Description: The Lebesgue outer measure function is countably sub-additive. (This version is a little easier to read, but does not allow infinite values like ovoliun 25540.) (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovoliun.t 𝑇 = seq1( + , 𝐺)
ovoliun.g 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
ovoliun.a ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
ovoliun.v ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
ovoliun2.t (𝜑𝑇 ∈ dom ⇝ )
Assertion
Ref Expression
ovoliun2 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ Σ𝑛 ∈ ℕ (vol*‘𝐴))
Distinct variable group:   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑇(𝑛)   𝐺(𝑛)

Proof of Theorem ovoliun2
Dummy variables 𝑘 𝑚 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovoliun.t . . 3 𝑇 = seq1( + , 𝐺)
2 ovoliun.g . . 3 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
3 ovoliun.a . . 3 ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
4 ovoliun.v . . 3 ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
51, 2, 3, 4ovoliun 25540 . 2 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
6 nnuz 12921 . . . . . . . 8 ℕ = (ℤ‘1)
7 1zzd 12648 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
8 fvex 6919 . . . . . . . . . . 11 (vol*‘𝑚 / 𝑛𝐴) ∈ V
9 nfcv 2905 . . . . . . . . . . . . . 14 𝑚(vol*‘𝐴)
10 nfcv 2905 . . . . . . . . . . . . . . 15 𝑛vol*
11 nfcsb1v 3923 . . . . . . . . . . . . . . 15 𝑛𝑚 / 𝑛𝐴
1210, 11nffv 6916 . . . . . . . . . . . . . 14 𝑛(vol*‘𝑚 / 𝑛𝐴)
13 csbeq1a 3913 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
1413fveq2d 6910 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → (vol*‘𝐴) = (vol*‘𝑚 / 𝑛𝐴))
159, 12, 14cbvmpt 5253 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) = (𝑚 ∈ ℕ ↦ (vol*‘𝑚 / 𝑛𝐴))
162, 15eqtri 2765 . . . . . . . . . . . 12 𝐺 = (𝑚 ∈ ℕ ↦ (vol*‘𝑚 / 𝑛𝐴))
1716fvmpt2 7027 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (vol*‘𝑚 / 𝑛𝐴) ∈ V) → (𝐺𝑚) = (vol*‘𝑚 / 𝑛𝐴))
188, 17mpan2 691 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝐺𝑚) = (vol*‘𝑚 / 𝑛𝐴))
1918adantl 481 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) = (vol*‘𝑚 / 𝑛𝐴))
204ralrimiva 3146 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ)
219nfel1 2922 . . . . . . . . . . . 12 𝑚(vol*‘𝐴) ∈ ℝ
2212nfel1 2922 . . . . . . . . . . . 12 𝑛(vol*‘𝑚 / 𝑛𝐴) ∈ ℝ
2314eleq1d 2826 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((vol*‘𝐴) ∈ ℝ ↔ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ))
2421, 22, 23cbvralw 3306 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ ↔ ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
2520, 24sylib 218 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
2625r19.21bi 3251 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
2719, 26eqeltrd 2841 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) ∈ ℝ)
286, 7, 27serfre 14072 . . . . . . 7 (𝜑 → seq1( + , 𝐺):ℕ⟶ℝ)
291feq1i 6727 . . . . . . 7 (𝑇:ℕ⟶ℝ ↔ seq1( + , 𝐺):ℕ⟶ℝ)
3028, 29sylibr 234 . . . . . 6 (𝜑𝑇:ℕ⟶ℝ)
3130frnd 6744 . . . . 5 (𝜑 → ran 𝑇 ⊆ ℝ)
32 1nn 12277 . . . . . . . 8 1 ∈ ℕ
3330fdmd 6746 . . . . . . . 8 (𝜑 → dom 𝑇 = ℕ)
3432, 33eleqtrrid 2848 . . . . . . 7 (𝜑 → 1 ∈ dom 𝑇)
3534ne0d 4342 . . . . . 6 (𝜑 → dom 𝑇 ≠ ∅)
36 dm0rn0 5935 . . . . . . 7 (dom 𝑇 = ∅ ↔ ran 𝑇 = ∅)
3736necon3bii 2993 . . . . . 6 (dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅)
3835, 37sylib 218 . . . . 5 (𝜑 → ran 𝑇 ≠ ∅)
39 ovoliun2.t . . . . . . . . 9 (𝜑𝑇 ∈ dom ⇝ )
401, 39eqeltrrid 2846 . . . . . . . 8 (𝜑 → seq1( + , 𝐺) ∈ dom ⇝ )
416, 7, 19, 26, 40isumrecl 15801 . . . . . . 7 (𝜑 → Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
42 elfznn 13593 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑘) → 𝑚 ∈ ℕ)
4342adantl 481 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → 𝑚 ∈ ℕ)
4443, 18syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (𝐺𝑚) = (vol*‘𝑚 / 𝑛𝐴))
45 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
4645, 6eleqtrdi 2851 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
47 simpl 482 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝜑)
4847, 42, 26syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
4948recnd 11289 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℂ)
5044, 46, 49fsumser 15766 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(vol*‘𝑚 / 𝑛𝐴) = (seq1( + , 𝐺)‘𝑘))
511fveq1i 6907 . . . . . . . . . 10 (𝑇𝑘) = (seq1( + , 𝐺)‘𝑘)
5250, 51eqtr4di 2795 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(vol*‘𝑚 / 𝑛𝐴) = (𝑇𝑘))
53 fzfid 14014 . . . . . . . . . . 11 (𝜑 → (1...𝑘) ∈ Fin)
54 fz1ssnn 13595 . . . . . . . . . . . 12 (1...𝑘) ⊆ ℕ
5554a1i 11 . . . . . . . . . . 11 (𝜑 → (1...𝑘) ⊆ ℕ)
563ralrimiva 3146 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ)
57 nfv 1914 . . . . . . . . . . . . . . 15 𝑚 𝐴 ⊆ ℝ
58 nfcv 2905 . . . . . . . . . . . . . . . 16 𝑛
5911, 58nfss 3976 . . . . . . . . . . . . . . 15 𝑛𝑚 / 𝑛𝐴 ⊆ ℝ
6013sseq1d 4015 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐴 ⊆ ℝ ↔ 𝑚 / 𝑛𝐴 ⊆ ℝ))
6157, 59, 60cbvralw 3306 . . . . . . . . . . . . . 14 (∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ ↔ ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
6256, 61sylib 218 . . . . . . . . . . . . 13 (𝜑 → ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
6362r19.21bi 3251 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝑚 / 𝑛𝐴 ⊆ ℝ)
64 ovolge0 25516 . . . . . . . . . . . 12 (𝑚 / 𝑛𝐴 ⊆ ℝ → 0 ≤ (vol*‘𝑚 / 𝑛𝐴))
6563, 64syl 17 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 0 ≤ (vol*‘𝑚 / 𝑛𝐴))
666, 7, 53, 55, 19, 26, 65, 40isumless 15881 . . . . . . . . . 10 (𝜑 → Σ𝑚 ∈ (1...𝑘)(vol*‘𝑚 / 𝑛𝐴) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
6766adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(vol*‘𝑚 / 𝑛𝐴) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
6852, 67eqbrtrrd 5167 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑇𝑘) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
6968ralrimiva 3146 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
70 brralrspcev 5203 . . . . . . 7 ((Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ ∧ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥)
7141, 69, 70syl2anc 584 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥)
7230ffnd 6737 . . . . . . . 8 (𝜑𝑇 Fn ℕ)
73 breq1 5146 . . . . . . . . 9 (𝑧 = (𝑇𝑘) → (𝑧𝑥 ↔ (𝑇𝑘) ≤ 𝑥))
7473ralrn 7108 . . . . . . . 8 (𝑇 Fn ℕ → (∀𝑧 ∈ ran 𝑇 𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥))
7572, 74syl 17 . . . . . . 7 (𝜑 → (∀𝑧 ∈ ran 𝑇 𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥))
7675rexbidv 3179 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑇 𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥))
7771, 76mpbird 257 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑇 𝑧𝑥)
78 supxrre 13369 . . . . 5 ((ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑇 𝑧𝑥) → sup(ran 𝑇, ℝ*, < ) = sup(ran 𝑇, ℝ, < ))
7931, 38, 77, 78syl3anc 1373 . . . 4 (𝜑 → sup(ran 𝑇, ℝ*, < ) = sup(ran 𝑇, ℝ, < ))
806, 1, 7, 19, 26, 65, 71isumsup 15883 . . . 4 (𝜑 → Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) = sup(ran 𝑇, ℝ, < ))
8179, 80eqtr4d 2780 . . 3 (𝜑 → sup(ran 𝑇, ℝ*, < ) = Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
8214, 9, 12cbvsum 15731 . . 3 Σ𝑛 ∈ ℕ (vol*‘𝐴) = Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴)
8381, 82eqtr4di 2795 . 2 (𝜑 → sup(ran 𝑇, ℝ*, < ) = Σ𝑛 ∈ ℕ (vol*‘𝐴))
845, 83breqtrd 5169 1 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ Σ𝑛 ∈ ℕ (vol*‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  Vcvv 3480  csb 3899  wss 3951  c0 4333   ciun 4991   class class class wbr 5143  cmpt 5225  dom cdm 5685  ran crn 5686   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  supcsup 9480  cr 11154  0cc0 11155  1c1 11156   + caddc 11158  *cxr 11294   < clt 11295  cle 11296  cn 12266  cuz 12878  ...cfz 13547  seqcseq 14042  cli 15520  Σcsu 15722  vol*covol 25497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-ioo 13391  df-ico 13393  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-ovol 25499
This theorem is referenced by:  ovoliunnul  25542  vitalilem5  25647
  Copyright terms: Public domain W3C validator