MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliun2 Structured version   Visualization version   GIF version

Theorem ovoliun2 24670
Description: The Lebesgue outer measure function is countably sub-additive. (This version is a little easier to read, but does not allow infinite values like ovoliun 24669.) (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovoliun.t 𝑇 = seq1( + , 𝐺)
ovoliun.g 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
ovoliun.a ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
ovoliun.v ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
ovoliun2.t (𝜑𝑇 ∈ dom ⇝ )
Assertion
Ref Expression
ovoliun2 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ Σ𝑛 ∈ ℕ (vol*‘𝐴))
Distinct variable group:   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑇(𝑛)   𝐺(𝑛)

Proof of Theorem ovoliun2
Dummy variables 𝑘 𝑚 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovoliun.t . . 3 𝑇 = seq1( + , 𝐺)
2 ovoliun.g . . 3 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
3 ovoliun.a . . 3 ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
4 ovoliun.v . . 3 ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
51, 2, 3, 4ovoliun 24669 . 2 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
6 nnuz 12621 . . . . . . . 8 ℕ = (ℤ‘1)
7 1zzd 12351 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
8 fvex 6787 . . . . . . . . . . 11 (vol*‘𝑚 / 𝑛𝐴) ∈ V
9 nfcv 2907 . . . . . . . . . . . . . 14 𝑚(vol*‘𝐴)
10 nfcv 2907 . . . . . . . . . . . . . . 15 𝑛vol*
11 nfcsb1v 3857 . . . . . . . . . . . . . . 15 𝑛𝑚 / 𝑛𝐴
1210, 11nffv 6784 . . . . . . . . . . . . . 14 𝑛(vol*‘𝑚 / 𝑛𝐴)
13 csbeq1a 3846 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
1413fveq2d 6778 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → (vol*‘𝐴) = (vol*‘𝑚 / 𝑛𝐴))
159, 12, 14cbvmpt 5185 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) = (𝑚 ∈ ℕ ↦ (vol*‘𝑚 / 𝑛𝐴))
162, 15eqtri 2766 . . . . . . . . . . . 12 𝐺 = (𝑚 ∈ ℕ ↦ (vol*‘𝑚 / 𝑛𝐴))
1716fvmpt2 6886 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (vol*‘𝑚 / 𝑛𝐴) ∈ V) → (𝐺𝑚) = (vol*‘𝑚 / 𝑛𝐴))
188, 17mpan2 688 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝐺𝑚) = (vol*‘𝑚 / 𝑛𝐴))
1918adantl 482 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) = (vol*‘𝑚 / 𝑛𝐴))
204ralrimiva 3103 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ)
219nfel1 2923 . . . . . . . . . . . 12 𝑚(vol*‘𝐴) ∈ ℝ
2212nfel1 2923 . . . . . . . . . . . 12 𝑛(vol*‘𝑚 / 𝑛𝐴) ∈ ℝ
2314eleq1d 2823 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((vol*‘𝐴) ∈ ℝ ↔ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ))
2421, 22, 23cbvralw 3373 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ ↔ ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
2520, 24sylib 217 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
2625r19.21bi 3134 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
2719, 26eqeltrd 2839 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) ∈ ℝ)
286, 7, 27serfre 13752 . . . . . . 7 (𝜑 → seq1( + , 𝐺):ℕ⟶ℝ)
291feq1i 6591 . . . . . . 7 (𝑇:ℕ⟶ℝ ↔ seq1( + , 𝐺):ℕ⟶ℝ)
3028, 29sylibr 233 . . . . . 6 (𝜑𝑇:ℕ⟶ℝ)
3130frnd 6608 . . . . 5 (𝜑 → ran 𝑇 ⊆ ℝ)
32 1nn 11984 . . . . . . . 8 1 ∈ ℕ
3330fdmd 6611 . . . . . . . 8 (𝜑 → dom 𝑇 = ℕ)
3432, 33eleqtrrid 2846 . . . . . . 7 (𝜑 → 1 ∈ dom 𝑇)
3534ne0d 4269 . . . . . 6 (𝜑 → dom 𝑇 ≠ ∅)
36 dm0rn0 5834 . . . . . . 7 (dom 𝑇 = ∅ ↔ ran 𝑇 = ∅)
3736necon3bii 2996 . . . . . 6 (dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅)
3835, 37sylib 217 . . . . 5 (𝜑 → ran 𝑇 ≠ ∅)
39 ovoliun2.t . . . . . . . . 9 (𝜑𝑇 ∈ dom ⇝ )
401, 39eqeltrrid 2844 . . . . . . . 8 (𝜑 → seq1( + , 𝐺) ∈ dom ⇝ )
416, 7, 19, 26, 40isumrecl 15477 . . . . . . 7 (𝜑 → Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
42 elfznn 13285 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑘) → 𝑚 ∈ ℕ)
4342adantl 482 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → 𝑚 ∈ ℕ)
4443, 18syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (𝐺𝑚) = (vol*‘𝑚 / 𝑛𝐴))
45 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
4645, 6eleqtrdi 2849 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
47 simpl 483 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝜑)
4847, 42, 26syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
4948recnd 11003 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℂ)
5044, 46, 49fsumser 15442 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(vol*‘𝑚 / 𝑛𝐴) = (seq1( + , 𝐺)‘𝑘))
511fveq1i 6775 . . . . . . . . . 10 (𝑇𝑘) = (seq1( + , 𝐺)‘𝑘)
5250, 51eqtr4di 2796 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(vol*‘𝑚 / 𝑛𝐴) = (𝑇𝑘))
53 fzfid 13693 . . . . . . . . . . 11 (𝜑 → (1...𝑘) ∈ Fin)
54 fz1ssnn 13287 . . . . . . . . . . . 12 (1...𝑘) ⊆ ℕ
5554a1i 11 . . . . . . . . . . 11 (𝜑 → (1...𝑘) ⊆ ℕ)
563ralrimiva 3103 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ)
57 nfv 1917 . . . . . . . . . . . . . . 15 𝑚 𝐴 ⊆ ℝ
58 nfcv 2907 . . . . . . . . . . . . . . . 16 𝑛
5911, 58nfss 3913 . . . . . . . . . . . . . . 15 𝑛𝑚 / 𝑛𝐴 ⊆ ℝ
6013sseq1d 3952 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐴 ⊆ ℝ ↔ 𝑚 / 𝑛𝐴 ⊆ ℝ))
6157, 59, 60cbvralw 3373 . . . . . . . . . . . . . 14 (∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ ↔ ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
6256, 61sylib 217 . . . . . . . . . . . . 13 (𝜑 → ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
6362r19.21bi 3134 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝑚 / 𝑛𝐴 ⊆ ℝ)
64 ovolge0 24645 . . . . . . . . . . . 12 (𝑚 / 𝑛𝐴 ⊆ ℝ → 0 ≤ (vol*‘𝑚 / 𝑛𝐴))
6563, 64syl 17 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 0 ≤ (vol*‘𝑚 / 𝑛𝐴))
666, 7, 53, 55, 19, 26, 65, 40isumless 15557 . . . . . . . . . 10 (𝜑 → Σ𝑚 ∈ (1...𝑘)(vol*‘𝑚 / 𝑛𝐴) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
6766adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(vol*‘𝑚 / 𝑛𝐴) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
6852, 67eqbrtrrd 5098 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑇𝑘) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
6968ralrimiva 3103 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
70 brralrspcev 5134 . . . . . . 7 ((Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ ∧ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥)
7141, 69, 70syl2anc 584 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥)
7230ffnd 6601 . . . . . . . 8 (𝜑𝑇 Fn ℕ)
73 breq1 5077 . . . . . . . . 9 (𝑧 = (𝑇𝑘) → (𝑧𝑥 ↔ (𝑇𝑘) ≤ 𝑥))
7473ralrn 6964 . . . . . . . 8 (𝑇 Fn ℕ → (∀𝑧 ∈ ran 𝑇 𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥))
7572, 74syl 17 . . . . . . 7 (𝜑 → (∀𝑧 ∈ ran 𝑇 𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥))
7675rexbidv 3226 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑇 𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥))
7771, 76mpbird 256 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑇 𝑧𝑥)
78 supxrre 13061 . . . . 5 ((ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑇 𝑧𝑥) → sup(ran 𝑇, ℝ*, < ) = sup(ran 𝑇, ℝ, < ))
7931, 38, 77, 78syl3anc 1370 . . . 4 (𝜑 → sup(ran 𝑇, ℝ*, < ) = sup(ran 𝑇, ℝ, < ))
806, 1, 7, 19, 26, 65, 71isumsup 15559 . . . 4 (𝜑 → Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) = sup(ran 𝑇, ℝ, < ))
8179, 80eqtr4d 2781 . . 3 (𝜑 → sup(ran 𝑇, ℝ*, < ) = Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
829, 12, 14cbvsumi 15409 . . 3 Σ𝑛 ∈ ℕ (vol*‘𝐴) = Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴)
8381, 82eqtr4di 2796 . 2 (𝜑 → sup(ran 𝑇, ℝ*, < ) = Σ𝑛 ∈ ℕ (vol*‘𝐴))
845, 83breqtrd 5100 1 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ Σ𝑛 ∈ ℕ (vol*‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  csb 3832  wss 3887  c0 4256   ciun 4924   class class class wbr 5074  cmpt 5157  dom cdm 5589  ran crn 5590   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  supcsup 9199  cr 10870  0cc0 10871  1c1 10872   + caddc 10874  *cxr 11008   < clt 11009  cle 11010  cn 11973  cuz 12582  ...cfz 13239  seqcseq 13721  cli 15193  Σcsu 15397  vol*covol 24626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-ioo 13083  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-ovol 24628
This theorem is referenced by:  ovoliunnul  24671  vitalilem5  24776
  Copyright terms: Public domain W3C validator