MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumdvdscom Structured version   Visualization version   GIF version

Theorem fsumdvdscom 26239
Description: A double commutation of divisor sums based on fsumdvdsdiag 26238. Note that 𝐴 depends on both 𝑗 and 𝑘. (Contributed by Mario Carneiro, 13-May-2016.)
Hypotheses
Ref Expression
fsumdvdscom.1 (𝜑𝑁 ∈ ℕ)
fsumdvdscom.2 (𝑗 = (𝑘 · 𝑚) → 𝐴 = 𝐵)
fsumdvdscom.3 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗})) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fsumdvdscom (𝜑 → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
Distinct variable groups:   𝐴,𝑚   𝐵,𝑗   𝑗,𝑘,𝑚,𝑥,𝑁   𝜑,𝑗,𝑘,𝑚
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑗,𝑘)   𝐵(𝑥,𝑘,𝑚)

Proof of Theorem fsumdvdscom
Dummy variables 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2906 . . 3 𝑢Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴
2 nfcv 2906 . . . 4 𝑗{𝑥 ∈ ℕ ∣ 𝑥𝑢}
3 nfcsb1v 3853 . . . 4 𝑗𝑢 / 𝑗𝐴
42, 3nfsum 15330 . . 3 𝑗Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴
5 breq2 5074 . . . . 5 (𝑗 = 𝑢 → (𝑥𝑗𝑥𝑢))
65rabbidv 3404 . . . 4 (𝑗 = 𝑢 → {𝑥 ∈ ℕ ∣ 𝑥𝑗} = {𝑥 ∈ ℕ ∣ 𝑥𝑢})
7 csbeq1a 3842 . . . . 5 (𝑗 = 𝑢𝐴 = 𝑢 / 𝑗𝐴)
87adantr 480 . . . 4 ((𝑗 = 𝑢𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}) → 𝐴 = 𝑢 / 𝑗𝐴)
96, 8sumeq12dv 15346 . . 3 (𝑗 = 𝑢 → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴)
101, 4, 9cbvsumi 15337 . 2 Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴
11 breq2 5074 . . . . . 6 (𝑢 = (𝑁 / 𝑣) → (𝑥𝑢𝑥 ∥ (𝑁 / 𝑣)))
1211rabbidv 3404 . . . . 5 (𝑢 = (𝑁 / 𝑣) → {𝑥 ∈ ℕ ∣ 𝑥𝑢} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)})
13 csbeq1 3831 . . . . . 6 (𝑢 = (𝑁 / 𝑣) → 𝑢 / 𝑗𝐴 = (𝑁 / 𝑣) / 𝑗𝐴)
1413adantr 480 . . . . 5 ((𝑢 = (𝑁 / 𝑣) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}) → 𝑢 / 𝑗𝐴 = (𝑁 / 𝑣) / 𝑗𝐴)
1512, 14sumeq12dv 15346 . . . 4 (𝑢 = (𝑁 / 𝑣) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}(𝑁 / 𝑣) / 𝑗𝐴)
16 fzfid 13621 . . . . 5 (𝜑 → (1...𝑁) ∈ Fin)
17 fsumdvdscom.1 . . . . . 6 (𝜑𝑁 ∈ ℕ)
18 dvdsssfz1 15955 . . . . . 6 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
1917, 18syl 17 . . . . 5 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
2016, 19ssfid 8971 . . . 4 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
21 eqid 2738 . . . . . 6 {𝑥 ∈ ℕ ∣ 𝑥𝑁} = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
22 eqid 2738 . . . . . 6 (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧)) = (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))
2321, 22dvdsflip 15954 . . . . 5 (𝑁 ∈ ℕ → (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧)):{𝑥 ∈ ℕ ∣ 𝑥𝑁}–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥𝑁})
2417, 23syl 17 . . . 4 (𝜑 → (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧)):{𝑥 ∈ ℕ ∣ 𝑥𝑁}–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥𝑁})
25 oveq2 7263 . . . . . 6 (𝑧 = 𝑣 → (𝑁 / 𝑧) = (𝑁 / 𝑣))
26 ovex 7288 . . . . . 6 (𝑁 / 𝑧) ∈ V
2725, 22, 26fvmpt3i 6862 . . . . 5 (𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))‘𝑣) = (𝑁 / 𝑣))
2827adantl 481 . . . 4 ((𝜑𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))‘𝑣) = (𝑁 / 𝑣))
29 fzfid 13621 . . . . . 6 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (1...𝑢) ∈ Fin)
30 ssrab2 4009 . . . . . . . 8 {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ ℕ
31 simpr 484 . . . . . . . 8 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
3230, 31sselid 3915 . . . . . . 7 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ ℕ)
33 dvdsssfz1 15955 . . . . . . 7 (𝑢 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑢} ⊆ (1...𝑢))
3432, 33syl 17 . . . . . 6 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥𝑢} ⊆ (1...𝑢))
3529, 34ssfid 8971 . . . . 5 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥𝑢} ∈ Fin)
36 fsumdvdscom.3 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗})) → 𝐴 ∈ ℂ)
3736ralrimivva 3114 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 ∈ ℂ)
38 nfv 1918 . . . . . . . . 9 𝑢𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 ∈ ℂ
393nfel1 2922 . . . . . . . . . 10 𝑗𝑢 / 𝑗𝐴 ∈ ℂ
402, 39nfralw 3149 . . . . . . . . 9 𝑗𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ
417eleq1d 2823 . . . . . . . . . 10 (𝑗 = 𝑢 → (𝐴 ∈ ℂ ↔ 𝑢 / 𝑗𝐴 ∈ ℂ))
426, 41raleqbidv 3327 . . . . . . . . 9 (𝑗 = 𝑢 → (∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 ∈ ℂ ↔ ∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ))
4338, 40, 42cbvralw 3363 . . . . . . . 8 (∀𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 ∈ ℂ ↔ ∀𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ)
4437, 43sylib 217 . . . . . . 7 (𝜑 → ∀𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ)
4544r19.21bi 3132 . . . . . 6 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ)
4645r19.21bi 3132 . . . . 5 (((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}) → 𝑢 / 𝑗𝐴 ∈ ℂ)
4735, 46fsumcl 15373 . . . 4 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ)
4815, 20, 24, 28, 47fsumf1o 15363 . . 3 (𝜑 → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 = Σ𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}(𝑁 / 𝑣) / 𝑗𝐴)
4913eleq1d 2823 . . . . . . . 8 (𝑢 = (𝑁 / 𝑣) → (𝑢 / 𝑗𝐴 ∈ ℂ ↔ (𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ))
5012, 49raleqbidv 3327 . . . . . . 7 (𝑢 = (𝑁 / 𝑣) → (∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ ↔ ∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}(𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ))
5144adantr 480 . . . . . . 7 ((𝜑𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ∀𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ)
52 dvdsdivcl 15953 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑣) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
5317, 52sylan 579 . . . . . . 7 ((𝜑𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑣) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
5450, 51, 53rspcdva 3554 . . . . . 6 ((𝜑𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}(𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ)
5554r19.21bi 3132 . . . . 5 (((𝜑𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}) → (𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ)
5655anasss 466 . . . 4 ((𝜑 ∧ (𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)})) → (𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ)
5717, 56fsumdvdsdiag 26238 . . 3 (𝜑 → Σ𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}(𝑁 / 𝑣) / 𝑗𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}(𝑁 / 𝑣) / 𝑗𝐴)
58 oveq2 7263 . . . . . . 7 (𝑣 = ((𝑁 / 𝑘) / 𝑚) → (𝑁 / 𝑣) = (𝑁 / ((𝑁 / 𝑘) / 𝑚)))
5958csbeq1d 3832 . . . . . 6 (𝑣 = ((𝑁 / 𝑘) / 𝑚) → (𝑁 / 𝑣) / 𝑗𝐴 = (𝑁 / ((𝑁 / 𝑘) / 𝑚)) / 𝑗𝐴)
60 fzfid 13621 . . . . . . 7 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (1...(𝑁 / 𝑘)) ∈ Fin)
61 dvdsdivcl 15953 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
6230, 61sselid 3915 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑘) ∈ ℕ)
6317, 62sylan 579 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑘) ∈ ℕ)
64 dvdsssfz1 15955 . . . . . . . 8 ((𝑁 / 𝑘) ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ⊆ (1...(𝑁 / 𝑘)))
6563, 64syl 17 . . . . . . 7 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ⊆ (1...(𝑁 / 𝑘)))
6660, 65ssfid 8971 . . . . . 6 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ∈ Fin)
67 eqid 2738 . . . . . . . 8 {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}
68 eqid 2738 . . . . . . . 8 (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↦ ((𝑁 / 𝑘) / 𝑧)) = (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↦ ((𝑁 / 𝑘) / 𝑧))
6967, 68dvdsflip 15954 . . . . . . 7 ((𝑁 / 𝑘) ∈ ℕ → (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↦ ((𝑁 / 𝑘) / 𝑧)):{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)})
7063, 69syl 17 . . . . . 6 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↦ ((𝑁 / 𝑘) / 𝑧)):{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)})
71 oveq2 7263 . . . . . . . 8 (𝑧 = 𝑚 → ((𝑁 / 𝑘) / 𝑧) = ((𝑁 / 𝑘) / 𝑚))
72 ovex 7288 . . . . . . . 8 ((𝑁 / 𝑘) / 𝑧) ∈ V
7371, 68, 72fvmpt3i 6862 . . . . . . 7 (𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↦ ((𝑁 / 𝑘) / 𝑧))‘𝑚) = ((𝑁 / 𝑘) / 𝑚))
7473adantl 481 . . . . . 6 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↦ ((𝑁 / 𝑘) / 𝑧))‘𝑚) = ((𝑁 / 𝑘) / 𝑚))
7517fsumdvdsdiaglem 26237 . . . . . . . 8 (𝜑 → ((𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)})))
7656ex 412 . . . . . . . 8 (𝜑 → ((𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}) → (𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ))
7775, 76syld 47 . . . . . . 7 (𝜑 → ((𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ))
7877impl 455 . . . . . 6 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ)
7959, 66, 70, 74, 78fsumf1o 15363 . . . . 5 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}(𝑁 / 𝑣) / 𝑗𝐴 = Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}(𝑁 / ((𝑁 / 𝑘) / 𝑚)) / 𝑗𝐴)
80 ovexd 7290 . . . . . . 7 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / ((𝑁 / 𝑘) / 𝑚)) ∈ V)
81 nncn 11911 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
82 nnne0 11937 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
8381, 82jca 511 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
8417, 83syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
8584ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
8685simpld 494 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → 𝑁 ∈ ℂ)
87 elrabi 3611 . . . . . . . . . . . . . . . 16 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → 𝑘 ∈ ℕ)
8887adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑘 ∈ ℕ)
8988adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → 𝑘 ∈ ℕ)
90 nncn 11911 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
91 nnne0 11937 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
9290, 91jca 511 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
9389, 92syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
94 elrabi 3611 . . . . . . . . . . . . . . 15 (𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} → 𝑚 ∈ ℕ)
9594adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → 𝑚 ∈ ℕ)
96 nncn 11911 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
97 nnne0 11937 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
9896, 97jca 511 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
9995, 98syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
100 divdiv1 11616 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0) ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) → ((𝑁 / 𝑘) / 𝑚) = (𝑁 / (𝑘 · 𝑚)))
10186, 93, 99, 100syl3anc 1369 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → ((𝑁 / 𝑘) / 𝑚) = (𝑁 / (𝑘 · 𝑚)))
102101oveq2d 7271 . . . . . . . . . . 11 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / ((𝑁 / 𝑘) / 𝑚)) = (𝑁 / (𝑁 / (𝑘 · 𝑚))))
103 nnmulcl 11927 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (𝑘 · 𝑚) ∈ ℕ)
10488, 94, 103syl2an 595 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑘 · 𝑚) ∈ ℕ)
105 nncn 11911 . . . . . . . . . . . . . 14 ((𝑘 · 𝑚) ∈ ℕ → (𝑘 · 𝑚) ∈ ℂ)
106 nnne0 11937 . . . . . . . . . . . . . 14 ((𝑘 · 𝑚) ∈ ℕ → (𝑘 · 𝑚) ≠ 0)
107105, 106jca 511 . . . . . . . . . . . . 13 ((𝑘 · 𝑚) ∈ ℕ → ((𝑘 · 𝑚) ∈ ℂ ∧ (𝑘 · 𝑚) ≠ 0))
108104, 107syl 17 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → ((𝑘 · 𝑚) ∈ ℂ ∧ (𝑘 · 𝑚) ≠ 0))
109 ddcan 11619 . . . . . . . . . . . 12 (((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) ∧ ((𝑘 · 𝑚) ∈ ℂ ∧ (𝑘 · 𝑚) ≠ 0)) → (𝑁 / (𝑁 / (𝑘 · 𝑚))) = (𝑘 · 𝑚))
11085, 108, 109syl2anc 583 . . . . . . . . . . 11 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / (𝑁 / (𝑘 · 𝑚))) = (𝑘 · 𝑚))
111102, 110eqtrd 2778 . . . . . . . . . 10 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / ((𝑁 / 𝑘) / 𝑚)) = (𝑘 · 𝑚))
112111eqeq2d 2749 . . . . . . . . 9 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑗 = (𝑁 / ((𝑁 / 𝑘) / 𝑚)) ↔ 𝑗 = (𝑘 · 𝑚)))
113112biimpa 476 . . . . . . . 8 ((((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) ∧ 𝑗 = (𝑁 / ((𝑁 / 𝑘) / 𝑚))) → 𝑗 = (𝑘 · 𝑚))
114 fsumdvdscom.2 . . . . . . . 8 (𝑗 = (𝑘 · 𝑚) → 𝐴 = 𝐵)
115113, 114syl 17 . . . . . . 7 ((((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) ∧ 𝑗 = (𝑁 / ((𝑁 / 𝑘) / 𝑚))) → 𝐴 = 𝐵)
11680, 115csbied 3866 . . . . . 6 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / ((𝑁 / 𝑘) / 𝑚)) / 𝑗𝐴 = 𝐵)
117116sumeq2dv 15343 . . . . 5 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}(𝑁 / ((𝑁 / 𝑘) / 𝑚)) / 𝑗𝐴 = Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
11879, 117eqtrd 2778 . . . 4 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}(𝑁 / 𝑣) / 𝑗𝐴 = Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
119118sumeq2dv 15343 . . 3 (𝜑 → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}(𝑁 / 𝑣) / 𝑗𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
12048, 57, 1193eqtrd 2782 . 2 (𝜑 → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
12110, 120syl5eq 2791 1 (𝜑 → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  {crab 3067  Vcvv 3422  csb 3828  wss 3883   class class class wbr 5070  cmpt 5153  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   · cmul 10807   / cdiv 11562  cn 11903  ...cfz 13168  Σcsu 15325  cdvds 15891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-dvds 15892
This theorem is referenced by:  logsqvma  26595
  Copyright terms: Public domain W3C validator