MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elplyd Structured version   Visualization version   GIF version

Theorem elplyd 26105
Description: Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
elplyd.1 (𝜑𝑆 ⊆ ℂ)
elplyd.2 (𝜑𝑁 ∈ ℕ0)
elplyd.3 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴𝑆)
Assertion
Ref Expression
elplyd (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑘,𝑁   𝜑,𝑘,𝑧   𝑆,𝑘,𝑧
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem elplyd
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . . . . 7 (𝑗 = 𝑘 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) = ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘))
2 oveq2 7357 . . . . . . 7 (𝑗 = 𝑘 → (𝑧𝑗) = (𝑧𝑘))
31, 2oveq12d 7367 . . . . . 6 (𝑗 = 𝑘 → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗)) = (((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘)))
4 nffvmpt1 6833 . . . . . . 7 𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗)
5 nfcv 2891 . . . . . . 7 𝑘 ·
6 nfcv 2891 . . . . . . 7 𝑘(𝑧𝑗)
74, 5, 6nfov 7379 . . . . . 6 𝑘(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗))
8 nfcv 2891 . . . . . 6 𝑗(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘))
93, 7, 8cbvsum 15602 . . . . 5 Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗)) = Σ𝑘 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘))
10 elfznn0 13523 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
11 iftrue 4482 . . . . . . . . . . 11 (𝑘 ∈ (0...𝑁) → if(𝑘 ∈ (0...𝑁), 𝐴, 0) = 𝐴)
1211adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → if(𝑘 ∈ (0...𝑁), 𝐴, 0) = 𝐴)
13 elplyd.3 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴𝑆)
1412, 13eqeltrd 2828 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → if(𝑘 ∈ (0...𝑁), 𝐴, 0) ∈ 𝑆)
15 eqid 2729 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))
1615fvmpt2 6941 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ∧ if(𝑘 ∈ (0...𝑁), 𝐴, 0) ∈ 𝑆) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) = if(𝑘 ∈ (0...𝑁), 𝐴, 0))
1710, 14, 16syl2an2 686 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) = if(𝑘 ∈ (0...𝑁), 𝐴, 0))
1817, 12eqtrd 2764 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) = 𝐴)
1918oveq1d 7364 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (𝐴 · (𝑧𝑘)))
2019sumeq2dv 15609 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘)))
219, 20eqtrid 2776 . . . 4 (𝜑 → Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘)))
2221mpteq2dv 5186 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
23 elplyd.1 . . . . 5 (𝜑𝑆 ⊆ ℂ)
24 0cnd 11108 . . . . . 6 (𝜑 → 0 ∈ ℂ)
2524snssd 4760 . . . . 5 (𝜑 → {0} ⊆ ℂ)
2623, 25unssd 4143 . . . 4 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
27 elplyd.2 . . . 4 (𝜑𝑁 ∈ ℕ0)
28 elun1 4133 . . . . . . . 8 (𝐴𝑆𝐴 ∈ (𝑆 ∪ {0}))
2913, 28syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (𝑆 ∪ {0}))
3029adantlr 715 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (𝑆 ∪ {0}))
31 ssun2 4130 . . . . . . . 8 {0} ⊆ (𝑆 ∪ {0})
32 c0ex 11109 . . . . . . . . 9 0 ∈ V
3332snss 4736 . . . . . . . 8 (0 ∈ (𝑆 ∪ {0}) ↔ {0} ⊆ (𝑆 ∪ {0}))
3431, 33mpbir 231 . . . . . . 7 0 ∈ (𝑆 ∪ {0})
3534a1i 11 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (0...𝑁)) → 0 ∈ (𝑆 ∪ {0}))
3630, 35ifclda 4512 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → if(𝑘 ∈ (0...𝑁), 𝐴, 0) ∈ (𝑆 ∪ {0}))
3736fmpttd 7049 . . . 4 (𝜑 → (𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0)):ℕ0⟶(𝑆 ∪ {0}))
38 elplyr 26104 . . . 4 (((𝑆 ∪ {0}) ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ (𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0)):ℕ0⟶(𝑆 ∪ {0})) → (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗))) ∈ (Poly‘(𝑆 ∪ {0})))
3926, 27, 37, 38syl3anc 1373 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗))) ∈ (Poly‘(𝑆 ∪ {0})))
4022, 39eqeltrrd 2829 . 2 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))) ∈ (Poly‘(𝑆 ∪ {0})))
41 plyun0 26100 . 2 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
4240, 41eleqtrdi 2838 1 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))) ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3901  wss 3903  ifcif 4476  {csn 4577  cmpt 5173  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009   · cmul 11014  0cn0 12384  ...cfz 13410  cexp 13968  Σcsu 15593  Polycply 26087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-seq 13909  df-sum 15594  df-ply 26091
This theorem is referenced by:  ply1term  26107  plyaddlem  26118  plymullem  26119  plycj  26181  plycjOLD  26183  dvply2g  26190  dvply2gOLD  26191  elqaalem3  26227  aareccl  26232  taylply2  26273  taylply2OLD  26274  basellem2  26990  aacllem  49796
  Copyright terms: Public domain W3C validator