MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elplyd Structured version   Visualization version   GIF version

Theorem elplyd 25563
Description: Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
elplyd.1 (𝜑𝑆 ⊆ ℂ)
elplyd.2 (𝜑𝑁 ∈ ℕ0)
elplyd.3 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴𝑆)
Assertion
Ref Expression
elplyd (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑘,𝑁   𝜑,𝑘,𝑧   𝑆,𝑘,𝑧
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem elplyd
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 nffvmpt1 6853 . . . . . . 7 𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗)
2 nfcv 2907 . . . . . . 7 𝑘 ·
3 nfcv 2907 . . . . . . 7 𝑘(𝑧𝑗)
41, 2, 3nfov 7387 . . . . . 6 𝑘(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗))
5 nfcv 2907 . . . . . 6 𝑗(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘))
6 fveq2 6842 . . . . . . 7 (𝑗 = 𝑘 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) = ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘))
7 oveq2 7365 . . . . . . 7 (𝑗 = 𝑘 → (𝑧𝑗) = (𝑧𝑘))
86, 7oveq12d 7375 . . . . . 6 (𝑗 = 𝑘 → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗)) = (((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘)))
94, 5, 8cbvsumi 15582 . . . . 5 Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗)) = Σ𝑘 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘))
10 elfznn0 13534 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
11 iftrue 4492 . . . . . . . . . . 11 (𝑘 ∈ (0...𝑁) → if(𝑘 ∈ (0...𝑁), 𝐴, 0) = 𝐴)
1211adantl 482 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → if(𝑘 ∈ (0...𝑁), 𝐴, 0) = 𝐴)
13 elplyd.3 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴𝑆)
1412, 13eqeltrd 2838 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → if(𝑘 ∈ (0...𝑁), 𝐴, 0) ∈ 𝑆)
15 eqid 2736 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))
1615fvmpt2 6959 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ∧ if(𝑘 ∈ (0...𝑁), 𝐴, 0) ∈ 𝑆) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) = if(𝑘 ∈ (0...𝑁), 𝐴, 0))
1710, 14, 16syl2an2 684 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) = if(𝑘 ∈ (0...𝑁), 𝐴, 0))
1817, 12eqtrd 2776 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) = 𝐴)
1918oveq1d 7372 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (𝐴 · (𝑧𝑘)))
2019sumeq2dv 15588 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘)))
219, 20eqtrid 2788 . . . 4 (𝜑 → Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘)))
2221mpteq2dv 5207 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
23 elplyd.1 . . . . 5 (𝜑𝑆 ⊆ ℂ)
24 0cnd 11148 . . . . . 6 (𝜑 → 0 ∈ ℂ)
2524snssd 4769 . . . . 5 (𝜑 → {0} ⊆ ℂ)
2623, 25unssd 4146 . . . 4 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
27 elplyd.2 . . . 4 (𝜑𝑁 ∈ ℕ0)
28 elun1 4136 . . . . . . . 8 (𝐴𝑆𝐴 ∈ (𝑆 ∪ {0}))
2913, 28syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (𝑆 ∪ {0}))
3029adantlr 713 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (𝑆 ∪ {0}))
31 ssun2 4133 . . . . . . . 8 {0} ⊆ (𝑆 ∪ {0})
32 c0ex 11149 . . . . . . . . 9 0 ∈ V
3332snss 4746 . . . . . . . 8 (0 ∈ (𝑆 ∪ {0}) ↔ {0} ⊆ (𝑆 ∪ {0}))
3431, 33mpbir 230 . . . . . . 7 0 ∈ (𝑆 ∪ {0})
3534a1i 11 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (0...𝑁)) → 0 ∈ (𝑆 ∪ {0}))
3630, 35ifclda 4521 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → if(𝑘 ∈ (0...𝑁), 𝐴, 0) ∈ (𝑆 ∪ {0}))
3736fmpttd 7063 . . . 4 (𝜑 → (𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0)):ℕ0⟶(𝑆 ∪ {0}))
38 elplyr 25562 . . . 4 (((𝑆 ∪ {0}) ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ (𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0)):ℕ0⟶(𝑆 ∪ {0})) → (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗))) ∈ (Poly‘(𝑆 ∪ {0})))
3926, 27, 37, 38syl3anc 1371 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗))) ∈ (Poly‘(𝑆 ∪ {0})))
4022, 39eqeltrrd 2839 . 2 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))) ∈ (Poly‘(𝑆 ∪ {0})))
41 plyun0 25558 . 2 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
4240, 41eleqtrdi 2848 1 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))) ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  cun 3908  wss 3910  ifcif 4486  {csn 4586  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051   · cmul 11056  0cn0 12413  ...cfz 13424  cexp 13967  Σcsu 15570  Polycply 25545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-seq 13907  df-sum 15571  df-ply 25549
This theorem is referenced by:  ply1term  25565  plyaddlem  25576  plymullem  25577  plycj  25638  dvply2g  25645  elqaalem3  25681  aareccl  25686  taylply2  25727  basellem2  26431  aacllem  47238
  Copyright terms: Public domain W3C validator