Proof of Theorem cdleme23a
Step | Hyp | Ref
| Expression |
1 | | cdleme23.v |
. 2
⊢ 𝑉 = ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ 𝑊)) |
2 | | cdleme23.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
3 | | cdleme23.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
4 | | simp11l 1283 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝐾 ∈ HL) |
5 | 4 | hllatd 37378 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝐾 ∈ Lat) |
6 | | simp12l 1285 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑆 ∈ 𝐴) |
7 | | simp13l 1287 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑇 ∈ 𝐴) |
8 | | cdleme23.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
9 | | cdleme23.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
10 | 2, 8, 9 | hlatjcl 37381 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (𝑆 ∨ 𝑇) ∈ 𝐵) |
11 | 4, 6, 7, 10 | syl3anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑆 ∨ 𝑇) ∈ 𝐵) |
12 | | simp2l 1198 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑋 ∈ 𝐵) |
13 | | simp11r 1284 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑊 ∈ 𝐻) |
14 | | cdleme23.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
15 | 2, 14 | lhpbase 38012 |
. . . . . 6
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
16 | 13, 15 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑊 ∈ 𝐵) |
17 | | cdleme23.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
18 | 2, 17 | latmcl 18158 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
19 | 5, 12, 16, 18 | syl3anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
20 | 2, 17 | latmcl 18158 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∨ 𝑇) ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ∈ 𝐵) → ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ 𝑊)) ∈ 𝐵) |
21 | 5, 11, 19, 20 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ 𝑊)) ∈ 𝐵) |
22 | 2, 3, 17 | latmle2 18183 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∨ 𝑇) ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ∈ 𝐵) → ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ 𝑊)) ≤ (𝑋 ∧ 𝑊)) |
23 | 5, 11, 19, 22 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ 𝑊)) ≤ (𝑋 ∧ 𝑊)) |
24 | 2, 3, 17 | latmle2 18183 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
25 | 5, 12, 16, 24 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
26 | 2, 3, 5, 21, 19, 16, 23, 25 | lattrd 18164 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ 𝑊)) ≤ 𝑊) |
27 | 1, 26 | eqbrtrid 5109 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑉 ≤ 𝑊) |