Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme23a Structured version   Visualization version   GIF version

Theorem cdleme23a 38858
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 8-Dec-2012.)
Hypotheses
Ref Expression
cdleme23.b 𝐡 = (Baseβ€˜πΎ)
cdleme23.l ≀ = (leβ€˜πΎ)
cdleme23.j ∨ = (joinβ€˜πΎ)
cdleme23.m ∧ = (meetβ€˜πΎ)
cdleme23.a 𝐴 = (Atomsβ€˜πΎ)
cdleme23.h 𝐻 = (LHypβ€˜πΎ)
cdleme23.v 𝑉 = ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ π‘Š))
Assertion
Ref Expression
cdleme23a ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝑉 ≀ π‘Š)

Proof of Theorem cdleme23a
StepHypRef Expression
1 cdleme23.v . 2 𝑉 = ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ π‘Š))
2 cdleme23.b . . 3 𝐡 = (Baseβ€˜πΎ)
3 cdleme23.l . . 3 ≀ = (leβ€˜πΎ)
4 simp11l 1285 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝐾 ∈ HL)
54hllatd 37872 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝐾 ∈ Lat)
6 simp12l 1287 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝑆 ∈ 𝐴)
7 simp13l 1289 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝑇 ∈ 𝐴)
8 cdleme23.j . . . . . 6 ∨ = (joinβ€˜πΎ)
9 cdleme23.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
102, 8, 9hlatjcl 37875 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ (𝑆 ∨ 𝑇) ∈ 𝐡)
114, 6, 7, 10syl3anc 1372 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ (𝑆 ∨ 𝑇) ∈ 𝐡)
12 simp2l 1200 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝑋 ∈ 𝐡)
13 simp11r 1286 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ π‘Š ∈ 𝐻)
14 cdleme23.h . . . . . . 7 𝐻 = (LHypβ€˜πΎ)
152, 14lhpbase 38507 . . . . . 6 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ 𝐡)
1613, 15syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ π‘Š ∈ 𝐡)
17 cdleme23.m . . . . . 6 ∧ = (meetβ€˜πΎ)
182, 17latmcl 18334 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Š ∈ 𝐡) β†’ (𝑋 ∧ π‘Š) ∈ 𝐡)
195, 12, 16, 18syl3anc 1372 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ (𝑋 ∧ π‘Š) ∈ 𝐡)
202, 17latmcl 18334 . . . 4 ((𝐾 ∈ Lat ∧ (𝑆 ∨ 𝑇) ∈ 𝐡 ∧ (𝑋 ∧ π‘Š) ∈ 𝐡) β†’ ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ π‘Š)) ∈ 𝐡)
215, 11, 19, 20syl3anc 1372 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ π‘Š)) ∈ 𝐡)
222, 3, 17latmle2 18359 . . . 4 ((𝐾 ∈ Lat ∧ (𝑆 ∨ 𝑇) ∈ 𝐡 ∧ (𝑋 ∧ π‘Š) ∈ 𝐡) β†’ ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ π‘Š)) ≀ (𝑋 ∧ π‘Š))
235, 11, 19, 22syl3anc 1372 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ π‘Š)) ≀ (𝑋 ∧ π‘Š))
242, 3, 17latmle2 18359 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Š ∈ 𝐡) β†’ (𝑋 ∧ π‘Š) ≀ π‘Š)
255, 12, 16, 24syl3anc 1372 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ (𝑋 ∧ π‘Š) ≀ π‘Š)
262, 3, 5, 21, 19, 16, 23, 25lattrd 18340 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ π‘Š)) ≀ π‘Š)
271, 26eqbrtrid 5141 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝑉 ≀ π‘Š)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2940   class class class wbr 5106  β€˜cfv 6497  (class class class)co 7358  Basecbs 17088  lecple 17145  joincjn 18205  meetcmee 18206  Latclat 18325  Atomscatm 37771  HLchlt 37858  LHypclh 38493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-poset 18207  df-lub 18240  df-glb 18241  df-join 18242  df-meet 18243  df-lat 18326  df-ats 37775  df-atl 37806  df-cvlat 37830  df-hlat 37859  df-lhyp 38497
This theorem is referenced by:  cdleme28a  38879
  Copyright terms: Public domain W3C validator