Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme23a Structured version   Visualization version   GIF version

Theorem cdleme23a 39733
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 8-Dec-2012.)
Hypotheses
Ref Expression
cdleme23.b 𝐡 = (Baseβ€˜πΎ)
cdleme23.l ≀ = (leβ€˜πΎ)
cdleme23.j ∨ = (joinβ€˜πΎ)
cdleme23.m ∧ = (meetβ€˜πΎ)
cdleme23.a 𝐴 = (Atomsβ€˜πΎ)
cdleme23.h 𝐻 = (LHypβ€˜πΎ)
cdleme23.v 𝑉 = ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ π‘Š))
Assertion
Ref Expression
cdleme23a ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝑉 ≀ π‘Š)

Proof of Theorem cdleme23a
StepHypRef Expression
1 cdleme23.v . 2 𝑉 = ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ π‘Š))
2 cdleme23.b . . 3 𝐡 = (Baseβ€˜πΎ)
3 cdleme23.l . . 3 ≀ = (leβ€˜πΎ)
4 simp11l 1281 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝐾 ∈ HL)
54hllatd 38747 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝐾 ∈ Lat)
6 simp12l 1283 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝑆 ∈ 𝐴)
7 simp13l 1285 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝑇 ∈ 𝐴)
8 cdleme23.j . . . . . 6 ∨ = (joinβ€˜πΎ)
9 cdleme23.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
102, 8, 9hlatjcl 38750 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ (𝑆 ∨ 𝑇) ∈ 𝐡)
114, 6, 7, 10syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ (𝑆 ∨ 𝑇) ∈ 𝐡)
12 simp2l 1196 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝑋 ∈ 𝐡)
13 simp11r 1282 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ π‘Š ∈ 𝐻)
14 cdleme23.h . . . . . . 7 𝐻 = (LHypβ€˜πΎ)
152, 14lhpbase 39382 . . . . . 6 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ 𝐡)
1613, 15syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ π‘Š ∈ 𝐡)
17 cdleme23.m . . . . . 6 ∧ = (meetβ€˜πΎ)
182, 17latmcl 18405 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Š ∈ 𝐡) β†’ (𝑋 ∧ π‘Š) ∈ 𝐡)
195, 12, 16, 18syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ (𝑋 ∧ π‘Š) ∈ 𝐡)
202, 17latmcl 18405 . . . 4 ((𝐾 ∈ Lat ∧ (𝑆 ∨ 𝑇) ∈ 𝐡 ∧ (𝑋 ∧ π‘Š) ∈ 𝐡) β†’ ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ π‘Š)) ∈ 𝐡)
215, 11, 19, 20syl3anc 1368 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ π‘Š)) ∈ 𝐡)
222, 3, 17latmle2 18430 . . . 4 ((𝐾 ∈ Lat ∧ (𝑆 ∨ 𝑇) ∈ 𝐡 ∧ (𝑋 ∧ π‘Š) ∈ 𝐡) β†’ ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ π‘Š)) ≀ (𝑋 ∧ π‘Š))
235, 11, 19, 22syl3anc 1368 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ π‘Š)) ≀ (𝑋 ∧ π‘Š))
242, 3, 17latmle2 18430 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Š ∈ 𝐡) β†’ (𝑋 ∧ π‘Š) ≀ π‘Š)
255, 12, 16, 24syl3anc 1368 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ (𝑋 ∧ π‘Š) ≀ π‘Š)
262, 3, 5, 21, 19, 16, 23, 25lattrd 18411 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ π‘Š)) ≀ π‘Š)
271, 26eqbrtrid 5176 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝑉 ≀ π‘Š)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934   class class class wbr 5141  β€˜cfv 6537  (class class class)co 7405  Basecbs 17153  lecple 17213  joincjn 18276  meetcmee 18277  Latclat 18396  Atomscatm 38646  HLchlt 38733  LHypclh 39368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-poset 18278  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-lat 18397  df-ats 38650  df-atl 38681  df-cvlat 38705  df-hlat 38734  df-lhyp 39372
This theorem is referenced by:  cdleme28a  39754
  Copyright terms: Public domain W3C validator