Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme4 Structured version   Visualization version   GIF version

Theorem cdleme4 37446
 Description: Part of proof of Lemma E in [Crawley] p. 113. 𝐹 and 𝐺 represent f(s) and fs(r). Here show p ∨ q = r ∨ u at the top of p. 114. (Contributed by NM, 7-Jun-2012.)
Hypotheses
Ref Expression
cdleme4.l = (le‘𝐾)
cdleme4.j = (join‘𝐾)
cdleme4.m = (meet‘𝐾)
cdleme4.a 𝐴 = (Atoms‘𝐾)
cdleme4.h 𝐻 = (LHyp‘𝐾)
cdleme4.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdleme4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝑃 𝑄) = (𝑅 𝑈))

Proof of Theorem cdleme4
StepHypRef Expression
1 cdleme4.u . . 3 𝑈 = ((𝑃 𝑄) 𝑊)
21oveq2i 7157 . 2 (𝑅 𝑈) = (𝑅 ((𝑃 𝑄) 𝑊))
3 simp1l 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → 𝐾 ∈ HL)
4 simp23l 1291 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → 𝑅𝐴)
5 simp21 1203 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → 𝑃𝐴)
6 simp22 1204 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → 𝑄𝐴)
7 eqid 2824 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
8 cdleme4.j . . . . . 6 = (join‘𝐾)
9 cdleme4.a . . . . . 6 𝐴 = (Atoms‘𝐾)
107, 8, 9hlatjcl 36575 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
113, 5, 6, 10syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝑃 𝑄) ∈ (Base‘𝐾))
12 simp1r 1195 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → 𝑊𝐻)
13 cdleme4.h . . . . . 6 𝐻 = (LHyp‘𝐾)
147, 13lhpbase 37206 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1512, 14syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → 𝑊 ∈ (Base‘𝐾))
16 simp3 1135 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → 𝑅 (𝑃 𝑄))
17 cdleme4.l . . . . 5 = (le‘𝐾)
18 cdleme4.m . . . . 5 = (meet‘𝐾)
197, 17, 8, 18, 9atmod3i1 37072 . . . 4 ((𝐾 ∈ HL ∧ (𝑅𝐴 ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑅 (𝑃 𝑄)) → (𝑅 ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) (𝑅 𝑊)))
203, 4, 11, 15, 16, 19syl131anc 1380 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝑅 ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) (𝑅 𝑊)))
21 simp1 1133 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
22 simp23 1205 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
23 eqid 2824 . . . . . 6 (1.‘𝐾) = (1.‘𝐾)
2417, 8, 23, 9, 13lhpjat2 37229 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 𝑊) = (1.‘𝐾))
2521, 22, 24syl2anc 587 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝑅 𝑊) = (1.‘𝐾))
2625oveq2d 7162 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → ((𝑃 𝑄) (𝑅 𝑊)) = ((𝑃 𝑄) (1.‘𝐾)))
27 hlol 36569 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OL)
283, 27syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → 𝐾 ∈ OL)
297, 18, 23olm11 36435 . . . 4 ((𝐾 ∈ OL ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (1.‘𝐾)) = (𝑃 𝑄))
3028, 11, 29syl2anc 587 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → ((𝑃 𝑄) (1.‘𝐾)) = (𝑃 𝑄))
3120, 26, 303eqtrd 2863 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝑅 ((𝑃 𝑄) 𝑊)) = (𝑃 𝑄))
322, 31syl5req 2872 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝑃 𝑄) = (𝑅 𝑈))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   class class class wbr 5053  ‘cfv 6344  (class class class)co 7146  Basecbs 16481  lecple 16570  joincjn 17552  meetcmee 17553  1.cp1 17646  OLcol 36382  Atomscatm 36471  HLchlt 36558  LHypclh 37192 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-iun 4908  df-iin 4909  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-1st 7681  df-2nd 7682  df-proset 17536  df-poset 17554  df-plt 17566  df-lub 17582  df-glb 17583  df-join 17584  df-meet 17585  df-p0 17647  df-p1 17648  df-lat 17654  df-clat 17716  df-oposet 36384  df-ol 36386  df-oml 36387  df-covers 36474  df-ats 36475  df-atl 36506  df-cvlat 36530  df-hlat 36559  df-psubsp 36711  df-pmap 36712  df-padd 37004  df-lhyp 37196 This theorem is referenced by:  cdleme5  37448  cdleme7aa  37450  cdleme7c  37453  cdleme7e  37455  cdleme20i  37525  cdleme36a  37668  cdleme37m  37670  cdleme39a  37673
 Copyright terms: Public domain W3C validator