| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmcld | Structured version Visualization version GIF version | ||
| Description: Any convergent sequence of points in a closed subset of a topological space converges to a point in the set. (Contributed by Mario Carneiro, 30-Dec-2013.) |
| Ref | Expression |
|---|---|
| lmff.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| lmff.3 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| lmff.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| lmcls.5 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
| lmcls.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑆) |
| lmcld.8 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) |
| Ref | Expression |
|---|---|
| lmcld | ⊢ (𝜑 → 𝑃 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmff.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | lmff.3 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 3 | lmff.4 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 4 | lmcls.5 | . . 3 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
| 5 | lmcls.7 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑆) | |
| 6 | lmcld.8 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) | |
| 7 | eqid 2731 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 8 | 7 | cldss 22950 | . . . . 5 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ ∪ 𝐽) |
| 9 | 6, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
| 10 | toponuni 22835 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 11 | 2, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| 12 | 9, 11 | sseqtrrd 3967 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| 13 | 1, 2, 3, 4, 5, 12 | lmcls 23223 | . 2 ⊢ (𝜑 → 𝑃 ∈ ((cls‘𝐽)‘𝑆)) |
| 14 | cldcls 22963 | . . 3 ⊢ (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆) | |
| 15 | 6, 14 | syl 17 | . 2 ⊢ (𝜑 → ((cls‘𝐽)‘𝑆) = 𝑆) |
| 16 | 13, 15 | eleqtrd 2833 | 1 ⊢ (𝜑 → 𝑃 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ∪ cuni 4858 class class class wbr 5093 ‘cfv 6487 ℤcz 12474 ℤ≥cuz 12738 TopOnctopon 22831 Clsdccld 22937 clsccl 22939 ⇝𝑡clm 23147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-pre-lttri 11086 ax-pre-lttrn 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-er 8628 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-neg 11353 df-z 12475 df-uz 12739 df-top 22815 df-topon 22832 df-cld 22940 df-ntr 22941 df-cls 22942 df-lm 23150 |
| This theorem is referenced by: 1stckgen 23475 lmle 25234 |
| Copyright terms: Public domain | W3C validator |