| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmcld | Structured version Visualization version GIF version | ||
| Description: Any convergent sequence of points in a closed subset of a topological space converges to a point in the set. (Contributed by Mario Carneiro, 30-Dec-2013.) |
| Ref | Expression |
|---|---|
| lmff.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| lmff.3 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| lmff.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| lmcls.5 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
| lmcls.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑆) |
| lmcld.8 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) |
| Ref | Expression |
|---|---|
| lmcld | ⊢ (𝜑 → 𝑃 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmff.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | lmff.3 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 3 | lmff.4 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 4 | lmcls.5 | . . 3 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
| 5 | lmcls.7 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑆) | |
| 6 | lmcld.8 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) | |
| 7 | eqid 2735 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 8 | 7 | cldss 22967 | . . . . 5 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ ∪ 𝐽) |
| 9 | 6, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
| 10 | toponuni 22852 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 11 | 2, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| 12 | 9, 11 | sseqtrrd 3996 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| 13 | 1, 2, 3, 4, 5, 12 | lmcls 23240 | . 2 ⊢ (𝜑 → 𝑃 ∈ ((cls‘𝐽)‘𝑆)) |
| 14 | cldcls 22980 | . . 3 ⊢ (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆) | |
| 15 | 6, 14 | syl 17 | . 2 ⊢ (𝜑 → ((cls‘𝐽)‘𝑆) = 𝑆) |
| 16 | 13, 15 | eleqtrd 2836 | 1 ⊢ (𝜑 → 𝑃 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ∪ cuni 4883 class class class wbr 5119 ‘cfv 6531 ℤcz 12588 ℤ≥cuz 12852 TopOnctopon 22848 Clsdccld 22954 clsccl 22956 ⇝𝑡clm 23164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-er 8719 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-neg 11469 df-z 12589 df-uz 12853 df-top 22832 df-topon 22849 df-cld 22957 df-ntr 22958 df-cls 22959 df-lm 23167 |
| This theorem is referenced by: 1stckgen 23492 lmle 25253 |
| Copyright terms: Public domain | W3C validator |