MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcld Structured version   Visualization version   GIF version

Theorem lmcld 23211
Description: Any convergent sequence of points in a closed subset of a topological space converges to a point in the set. (Contributed by Mario Carneiro, 30-Dec-2013.)
Hypotheses
Ref Expression
lmff.1 𝑍 = (ℤ𝑀)
lmff.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
lmff.4 (𝜑𝑀 ∈ ℤ)
lmcls.5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmcls.7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑆)
lmcld.8 (𝜑𝑆 ∈ (Clsd‘𝐽))
Assertion
Ref Expression
lmcld (𝜑𝑃𝑆)
Distinct variable groups:   𝑘,𝐹   𝑘,𝐽   𝑘,𝑀   𝑃,𝑘   𝑆,𝑘   𝜑,𝑘   𝑘,𝑋   𝑘,𝑍

Proof of Theorem lmcld
StepHypRef Expression
1 lmff.1 . . 3 𝑍 = (ℤ𝑀)
2 lmff.3 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 lmff.4 . . 3 (𝜑𝑀 ∈ ℤ)
4 lmcls.5 . . 3 (𝜑𝐹(⇝𝑡𝐽)𝑃)
5 lmcls.7 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑆)
6 lmcld.8 . . . . 5 (𝜑𝑆 ∈ (Clsd‘𝐽))
7 eqid 2730 . . . . . 6 𝐽 = 𝐽
87cldss 22937 . . . . 5 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
96, 8syl 17 . . . 4 (𝜑𝑆 𝐽)
10 toponuni 22822 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
112, 10syl 17 . . . 4 (𝜑𝑋 = 𝐽)
129, 11sseqtrrd 3970 . . 3 (𝜑𝑆𝑋)
131, 2, 3, 4, 5, 12lmcls 23210 . 2 (𝜑𝑃 ∈ ((cls‘𝐽)‘𝑆))
14 cldcls 22950 . . 3 (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆)
156, 14syl 17 . 2 (𝜑 → ((cls‘𝐽)‘𝑆) = 𝑆)
1613, 15eleqtrd 2831 1 (𝜑𝑃𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  wss 3900   cuni 4857   class class class wbr 5089  cfv 6477  cz 12460  cuz 12724  TopOnctopon 22818  Clsdccld 22924  clsccl 22926  𝑡clm 23134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-pre-lttri 11072  ax-pre-lttrn 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-er 8617  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-neg 11339  df-z 12461  df-uz 12725  df-top 22802  df-topon 22819  df-cld 22927  df-ntr 22928  df-cls 22929  df-lm 23137
This theorem is referenced by:  1stckgen  23462  lmle  25221
  Copyright terms: Public domain W3C validator