| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmcld | Structured version Visualization version GIF version | ||
| Description: Any convergent sequence of points in a closed subset of a topological space converges to a point in the set. (Contributed by Mario Carneiro, 30-Dec-2013.) |
| Ref | Expression |
|---|---|
| lmff.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| lmff.3 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| lmff.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| lmcls.5 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
| lmcls.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑆) |
| lmcld.8 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) |
| Ref | Expression |
|---|---|
| lmcld | ⊢ (𝜑 → 𝑃 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmff.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | lmff.3 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 3 | lmff.4 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 4 | lmcls.5 | . . 3 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
| 5 | lmcls.7 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑆) | |
| 6 | lmcld.8 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) | |
| 7 | eqid 2729 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 8 | 7 | cldss 22932 | . . . . 5 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ ∪ 𝐽) |
| 9 | 6, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
| 10 | toponuni 22817 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 11 | 2, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| 12 | 9, 11 | sseqtrrd 3975 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| 13 | 1, 2, 3, 4, 5, 12 | lmcls 23205 | . 2 ⊢ (𝜑 → 𝑃 ∈ ((cls‘𝐽)‘𝑆)) |
| 14 | cldcls 22945 | . . 3 ⊢ (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆) | |
| 15 | 6, 14 | syl 17 | . 2 ⊢ (𝜑 → ((cls‘𝐽)‘𝑆) = 𝑆) |
| 16 | 13, 15 | eleqtrd 2830 | 1 ⊢ (𝜑 → 𝑃 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ∪ cuni 4861 class class class wbr 5095 ‘cfv 6486 ℤcz 12489 ℤ≥cuz 12753 TopOnctopon 22813 Clsdccld 22919 clsccl 22921 ⇝𝑡clm 23129 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-er 8632 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-neg 11368 df-z 12490 df-uz 12754 df-top 22797 df-topon 22814 df-cld 22922 df-ntr 22923 df-cls 22924 df-lm 23132 |
| This theorem is referenced by: 1stckgen 23457 lmle 25217 |
| Copyright terms: Public domain | W3C validator |