MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcld Structured version   Visualization version   GIF version

Theorem lmcld 21911
Description: Any convergent sequence of points in a closed subset of a topological space converges to a point in the set. (Contributed by Mario Carneiro, 30-Dec-2013.)
Hypotheses
Ref Expression
lmff.1 𝑍 = (ℤ𝑀)
lmff.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
lmff.4 (𝜑𝑀 ∈ ℤ)
lmcls.5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmcls.7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑆)
lmcld.8 (𝜑𝑆 ∈ (Clsd‘𝐽))
Assertion
Ref Expression
lmcld (𝜑𝑃𝑆)
Distinct variable groups:   𝑘,𝐹   𝑘,𝐽   𝑘,𝑀   𝑃,𝑘   𝑆,𝑘   𝜑,𝑘   𝑘,𝑋   𝑘,𝑍

Proof of Theorem lmcld
StepHypRef Expression
1 lmff.1 . . 3 𝑍 = (ℤ𝑀)
2 lmff.3 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 lmff.4 . . 3 (𝜑𝑀 ∈ ℤ)
4 lmcls.5 . . 3 (𝜑𝐹(⇝𝑡𝐽)𝑃)
5 lmcls.7 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑆)
6 lmcld.8 . . . . 5 (𝜑𝑆 ∈ (Clsd‘𝐽))
7 eqid 2821 . . . . . 6 𝐽 = 𝐽
87cldss 21637 . . . . 5 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
96, 8syl 17 . . . 4 (𝜑𝑆 𝐽)
10 toponuni 21522 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
112, 10syl 17 . . . 4 (𝜑𝑋 = 𝐽)
129, 11sseqtrrd 4008 . . 3 (𝜑𝑆𝑋)
131, 2, 3, 4, 5, 12lmcls 21910 . 2 (𝜑𝑃 ∈ ((cls‘𝐽)‘𝑆))
14 cldcls 21650 . . 3 (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆)
156, 14syl 17 . 2 (𝜑 → ((cls‘𝐽)‘𝑆) = 𝑆)
1613, 15eleqtrd 2915 1 (𝜑𝑃𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wss 3936   cuni 4838   class class class wbr 5066  cfv 6355  cz 11982  cuz 12244  TopOnctopon 21518  Clsdccld 21624  clsccl 21626  𝑡clm 21834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-pre-lttri 10611  ax-pre-lttrn 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-er 8289  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-neg 10873  df-z 11983  df-uz 12245  df-top 21502  df-topon 21519  df-cld 21627  df-ntr 21628  df-cls 21629  df-lm 21837
This theorem is referenced by:  1stckgen  22162  lmle  23904
  Copyright terms: Public domain W3C validator