| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmcld | Structured version Visualization version GIF version | ||
| Description: Any convergent sequence of points in a closed subset of a topological space converges to a point in the set. (Contributed by Mario Carneiro, 30-Dec-2013.) |
| Ref | Expression |
|---|---|
| lmff.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| lmff.3 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| lmff.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| lmcls.5 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
| lmcls.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑆) |
| lmcld.8 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) |
| Ref | Expression |
|---|---|
| lmcld | ⊢ (𝜑 → 𝑃 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmff.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | lmff.3 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 3 | lmff.4 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 4 | lmcls.5 | . . 3 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
| 5 | lmcls.7 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑆) | |
| 6 | lmcld.8 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) | |
| 7 | eqid 2730 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 8 | 7 | cldss 22937 | . . . . 5 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ ∪ 𝐽) |
| 9 | 6, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
| 10 | toponuni 22822 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 11 | 2, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| 12 | 9, 11 | sseqtrrd 3970 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| 13 | 1, 2, 3, 4, 5, 12 | lmcls 23210 | . 2 ⊢ (𝜑 → 𝑃 ∈ ((cls‘𝐽)‘𝑆)) |
| 14 | cldcls 22950 | . . 3 ⊢ (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆) | |
| 15 | 6, 14 | syl 17 | . 2 ⊢ (𝜑 → ((cls‘𝐽)‘𝑆) = 𝑆) |
| 16 | 13, 15 | eleqtrd 2831 | 1 ⊢ (𝜑 → 𝑃 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ⊆ wss 3900 ∪ cuni 4857 class class class wbr 5089 ‘cfv 6477 ℤcz 12460 ℤ≥cuz 12724 TopOnctopon 22818 Clsdccld 22924 clsccl 22926 ⇝𝑡clm 23134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-pre-lttri 11072 ax-pre-lttrn 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-er 8617 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-neg 11339 df-z 12461 df-uz 12725 df-top 22802 df-topon 22819 df-cld 22927 df-ntr 22928 df-cls 22929 df-lm 23137 |
| This theorem is referenced by: 1stckgen 23462 lmle 25221 |
| Copyright terms: Public domain | W3C validator |