![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmcld | Structured version Visualization version GIF version |
Description: Any convergent sequence of points in a closed subset of a topological space converges to a point in the set. (Contributed by Mario Carneiro, 30-Dec-2013.) |
Ref | Expression |
---|---|
lmff.1 | β’ π = (β€β₯βπ) |
lmff.3 | β’ (π β π½ β (TopOnβπ)) |
lmff.4 | β’ (π β π β β€) |
lmcls.5 | β’ (π β πΉ(βπ‘βπ½)π) |
lmcls.7 | β’ ((π β§ π β π) β (πΉβπ) β π) |
lmcld.8 | β’ (π β π β (Clsdβπ½)) |
Ref | Expression |
---|---|
lmcld | β’ (π β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmff.1 | . . 3 β’ π = (β€β₯βπ) | |
2 | lmff.3 | . . 3 β’ (π β π½ β (TopOnβπ)) | |
3 | lmff.4 | . . 3 β’ (π β π β β€) | |
4 | lmcls.5 | . . 3 β’ (π β πΉ(βπ‘βπ½)π) | |
5 | lmcls.7 | . . 3 β’ ((π β§ π β π) β (πΉβπ) β π) | |
6 | lmcld.8 | . . . . 5 β’ (π β π β (Clsdβπ½)) | |
7 | eqid 2730 | . . . . . 6 β’ βͺ π½ = βͺ π½ | |
8 | 7 | cldss 22755 | . . . . 5 β’ (π β (Clsdβπ½) β π β βͺ π½) |
9 | 6, 8 | syl 17 | . . . 4 β’ (π β π β βͺ π½) |
10 | toponuni 22638 | . . . . 5 β’ (π½ β (TopOnβπ) β π = βͺ π½) | |
11 | 2, 10 | syl 17 | . . . 4 β’ (π β π = βͺ π½) |
12 | 9, 11 | sseqtrrd 4024 | . . 3 β’ (π β π β π) |
13 | 1, 2, 3, 4, 5, 12 | lmcls 23028 | . 2 β’ (π β π β ((clsβπ½)βπ)) |
14 | cldcls 22768 | . . 3 β’ (π β (Clsdβπ½) β ((clsβπ½)βπ) = π) | |
15 | 6, 14 | syl 17 | . 2 β’ (π β ((clsβπ½)βπ) = π) |
16 | 13, 15 | eleqtrd 2833 | 1 β’ (π β π β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 β wss 3949 βͺ cuni 4909 class class class wbr 5149 βcfv 6544 β€cz 12564 β€β₯cuz 12828 TopOnctopon 22634 Clsdccld 22742 clsccl 22744 βπ‘clm 22952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-pre-lttri 11188 ax-pre-lttrn 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7979 df-2nd 7980 df-er 8707 df-pm 8827 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-neg 11453 df-z 12565 df-uz 12829 df-top 22618 df-topon 22635 df-cld 22745 df-ntr 22746 df-cls 22747 df-lm 22955 |
This theorem is referenced by: 1stckgen 23280 lmle 25051 |
Copyright terms: Public domain | W3C validator |