![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > restcls2 | Structured version Visualization version GIF version |
Description: A closed set in a subspace topology is the closure in the original topology intersecting with the subspace. (Contributed by Zhi Wang, 2-Sep-2024.) |
Ref | Expression |
---|---|
restcls2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
restcls2.2 | ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
restcls2.3 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
restcls2.4 | ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) |
restcls2.5 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) |
Ref | Expression |
---|---|
restcls2 | ⊢ (𝜑 → 𝑆 = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restcls2.4 | . . . 4 ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) | |
2 | 1 | fveq2d 6892 | . . 3 ⊢ (𝜑 → (cls‘𝐾) = (cls‘(𝐽 ↾t 𝑌))) |
3 | 2 | fveq1d 6890 | . 2 ⊢ (𝜑 → ((cls‘𝐾)‘𝑆) = ((cls‘(𝐽 ↾t 𝑌))‘𝑆)) |
4 | restcls2.5 | . . 3 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) | |
5 | cldcls 22537 | . . 3 ⊢ (𝑆 ∈ (Clsd‘𝐾) → ((cls‘𝐾)‘𝑆) = 𝑆) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → ((cls‘𝐾)‘𝑆) = 𝑆) |
7 | restcls2.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
8 | restcls2.3 | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
9 | restcls2.2 | . . . 4 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) | |
10 | 8, 9 | sseqtrd 4021 | . . 3 ⊢ (𝜑 → 𝑌 ⊆ ∪ 𝐽) |
11 | 7, 9, 8, 1, 4 | restcls2lem 47498 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑌) |
12 | eqid 2732 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
13 | eqid 2732 | . . . 4 ⊢ (𝐽 ↾t 𝑌) = (𝐽 ↾t 𝑌) | |
14 | 12, 13 | restcls 22676 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ ∪ 𝐽 ∧ 𝑆 ⊆ 𝑌) → ((cls‘(𝐽 ↾t 𝑌))‘𝑆) = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) |
15 | 7, 10, 11, 14 | syl3anc 1371 | . 2 ⊢ (𝜑 → ((cls‘(𝐽 ↾t 𝑌))‘𝑆) = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) |
16 | 3, 6, 15 | 3eqtr3d 2780 | 1 ⊢ (𝜑 → 𝑆 = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∩ cin 3946 ⊆ wss 3947 ∪ cuni 4907 ‘cfv 6540 (class class class)co 7405 ↾t crest 17362 Topctop 22386 Clsdccld 22511 clsccl 22513 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-en 8936 df-fin 8939 df-fi 9402 df-rest 17364 df-topgen 17385 df-top 22387 df-topon 22404 df-bases 22440 df-cld 22514 df-cls 22516 |
This theorem is referenced by: restclsseplem 47500 |
Copyright terms: Public domain | W3C validator |