Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restcls2 Structured version   Visualization version   GIF version

Theorem restcls2 48886
Description: A closed set in a subspace topology is the closure in the original topology intersecting with the subspace. (Contributed by Zhi Wang, 2-Sep-2024.)
Hypotheses
Ref Expression
restcls2.1 (𝜑𝐽 ∈ Top)
restcls2.2 (𝜑𝑋 = 𝐽)
restcls2.3 (𝜑𝑌𝑋)
restcls2.4 (𝜑𝐾 = (𝐽t 𝑌))
restcls2.5 (𝜑𝑆 ∈ (Clsd‘𝐾))
Assertion
Ref Expression
restcls2 (𝜑𝑆 = (((cls‘𝐽)‘𝑆) ∩ 𝑌))

Proof of Theorem restcls2
StepHypRef Expression
1 restcls2.4 . . . 4 (𝜑𝐾 = (𝐽t 𝑌))
21fveq2d 6830 . . 3 (𝜑 → (cls‘𝐾) = (cls‘(𝐽t 𝑌)))
32fveq1d 6828 . 2 (𝜑 → ((cls‘𝐾)‘𝑆) = ((cls‘(𝐽t 𝑌))‘𝑆))
4 restcls2.5 . . 3 (𝜑𝑆 ∈ (Clsd‘𝐾))
5 cldcls 22945 . . 3 (𝑆 ∈ (Clsd‘𝐾) → ((cls‘𝐾)‘𝑆) = 𝑆)
64, 5syl 17 . 2 (𝜑 → ((cls‘𝐾)‘𝑆) = 𝑆)
7 restcls2.1 . . 3 (𝜑𝐽 ∈ Top)
8 restcls2.3 . . . 4 (𝜑𝑌𝑋)
9 restcls2.2 . . . 4 (𝜑𝑋 = 𝐽)
108, 9sseqtrd 3974 . . 3 (𝜑𝑌 𝐽)
117, 9, 8, 1, 4restcls2lem 48885 . . 3 (𝜑𝑆𝑌)
12 eqid 2729 . . . 4 𝐽 = 𝐽
13 eqid 2729 . . . 4 (𝐽t 𝑌) = (𝐽t 𝑌)
1412, 13restcls 23084 . . 3 ((𝐽 ∈ Top ∧ 𝑌 𝐽𝑆𝑌) → ((cls‘(𝐽t 𝑌))‘𝑆) = (((cls‘𝐽)‘𝑆) ∩ 𝑌))
157, 10, 11, 14syl3anc 1373 . 2 (𝜑 → ((cls‘(𝐽t 𝑌))‘𝑆) = (((cls‘𝐽)‘𝑆) ∩ 𝑌))
163, 6, 153eqtr3d 2772 1 (𝜑𝑆 = (((cls‘𝐽)‘𝑆) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3904  wss 3905   cuni 4861  cfv 6486  (class class class)co 7353  t crest 17342  Topctop 22796  Clsdccld 22919  clsccl 22921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-en 8880  df-fin 8883  df-fi 9320  df-rest 17344  df-topgen 17365  df-top 22797  df-topon 22814  df-bases 22849  df-cld 22922  df-cls 22924
This theorem is referenced by:  restclsseplem  48887
  Copyright terms: Public domain W3C validator