| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > restcls2 | Structured version Visualization version GIF version | ||
| Description: A closed set in a subspace topology is the closure in the original topology intersecting with the subspace. (Contributed by Zhi Wang, 2-Sep-2024.) |
| Ref | Expression |
|---|---|
| restcls2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| restcls2.2 | ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| restcls2.3 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| restcls2.4 | ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) |
| restcls2.5 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) |
| Ref | Expression |
|---|---|
| restcls2 | ⊢ (𝜑 → 𝑆 = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restcls2.4 | . . . 4 ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) | |
| 2 | 1 | fveq2d 6865 | . . 3 ⊢ (𝜑 → (cls‘𝐾) = (cls‘(𝐽 ↾t 𝑌))) |
| 3 | 2 | fveq1d 6863 | . 2 ⊢ (𝜑 → ((cls‘𝐾)‘𝑆) = ((cls‘(𝐽 ↾t 𝑌))‘𝑆)) |
| 4 | restcls2.5 | . . 3 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) | |
| 5 | cldcls 22936 | . . 3 ⊢ (𝑆 ∈ (Clsd‘𝐾) → ((cls‘𝐾)‘𝑆) = 𝑆) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → ((cls‘𝐾)‘𝑆) = 𝑆) |
| 7 | restcls2.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 8 | restcls2.3 | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
| 9 | restcls2.2 | . . . 4 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) | |
| 10 | 8, 9 | sseqtrd 3986 | . . 3 ⊢ (𝜑 → 𝑌 ⊆ ∪ 𝐽) |
| 11 | 7, 9, 8, 1, 4 | restcls2lem 48905 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑌) |
| 12 | eqid 2730 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 13 | eqid 2730 | . . . 4 ⊢ (𝐽 ↾t 𝑌) = (𝐽 ↾t 𝑌) | |
| 14 | 12, 13 | restcls 23075 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ ∪ 𝐽 ∧ 𝑆 ⊆ 𝑌) → ((cls‘(𝐽 ↾t 𝑌))‘𝑆) = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) |
| 15 | 7, 10, 11, 14 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((cls‘(𝐽 ↾t 𝑌))‘𝑆) = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) |
| 16 | 3, 6, 15 | 3eqtr3d 2773 | 1 ⊢ (𝜑 → 𝑆 = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3916 ⊆ wss 3917 ∪ cuni 4874 ‘cfv 6514 (class class class)co 7390 ↾t crest 17390 Topctop 22787 Clsdccld 22910 clsccl 22912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-en 8922 df-fin 8925 df-fi 9369 df-rest 17392 df-topgen 17413 df-top 22788 df-topon 22805 df-bases 22840 df-cld 22913 df-cls 22915 |
| This theorem is referenced by: restclsseplem 48907 |
| Copyright terms: Public domain | W3C validator |