Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restcls2 Structured version   Visualization version   GIF version

Theorem restcls2 48818
Description: A closed set in a subspace topology is the closure in the original topology intersecting with the subspace. (Contributed by Zhi Wang, 2-Sep-2024.)
Hypotheses
Ref Expression
restcls2.1 (𝜑𝐽 ∈ Top)
restcls2.2 (𝜑𝑋 = 𝐽)
restcls2.3 (𝜑𝑌𝑋)
restcls2.4 (𝜑𝐾 = (𝐽t 𝑌))
restcls2.5 (𝜑𝑆 ∈ (Clsd‘𝐾))
Assertion
Ref Expression
restcls2 (𝜑𝑆 = (((cls‘𝐽)‘𝑆) ∩ 𝑌))

Proof of Theorem restcls2
StepHypRef Expression
1 restcls2.4 . . . 4 (𝜑𝐾 = (𝐽t 𝑌))
21fveq2d 6909 . . 3 (𝜑 → (cls‘𝐾) = (cls‘(𝐽t 𝑌)))
32fveq1d 6907 . 2 (𝜑 → ((cls‘𝐾)‘𝑆) = ((cls‘(𝐽t 𝑌))‘𝑆))
4 restcls2.5 . . 3 (𝜑𝑆 ∈ (Clsd‘𝐾))
5 cldcls 23051 . . 3 (𝑆 ∈ (Clsd‘𝐾) → ((cls‘𝐾)‘𝑆) = 𝑆)
64, 5syl 17 . 2 (𝜑 → ((cls‘𝐾)‘𝑆) = 𝑆)
7 restcls2.1 . . 3 (𝜑𝐽 ∈ Top)
8 restcls2.3 . . . 4 (𝜑𝑌𝑋)
9 restcls2.2 . . . 4 (𝜑𝑋 = 𝐽)
108, 9sseqtrd 4019 . . 3 (𝜑𝑌 𝐽)
117, 9, 8, 1, 4restcls2lem 48817 . . 3 (𝜑𝑆𝑌)
12 eqid 2736 . . . 4 𝐽 = 𝐽
13 eqid 2736 . . . 4 (𝐽t 𝑌) = (𝐽t 𝑌)
1412, 13restcls 23190 . . 3 ((𝐽 ∈ Top ∧ 𝑌 𝐽𝑆𝑌) → ((cls‘(𝐽t 𝑌))‘𝑆) = (((cls‘𝐽)‘𝑆) ∩ 𝑌))
157, 10, 11, 14syl3anc 1372 . 2 (𝜑 → ((cls‘(𝐽t 𝑌))‘𝑆) = (((cls‘𝐽)‘𝑆) ∩ 𝑌))
163, 6, 153eqtr3d 2784 1 (𝜑𝑆 = (((cls‘𝐽)‘𝑆) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cin 3949  wss 3950   cuni 4906  cfv 6560  (class class class)co 7432  t crest 17466  Topctop 22900  Clsdccld 23025  clsccl 23027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-en 8987  df-fin 8990  df-fi 9452  df-rest 17468  df-topgen 17489  df-top 22901  df-topon 22918  df-bases 22954  df-cld 23028  df-cls 23030
This theorem is referenced by:  restclsseplem  48819
  Copyright terms: Public domain W3C validator