| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > restcls2 | Structured version Visualization version GIF version | ||
| Description: A closed set in a subspace topology is the closure in the original topology intersecting with the subspace. (Contributed by Zhi Wang, 2-Sep-2024.) |
| Ref | Expression |
|---|---|
| restcls2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| restcls2.2 | ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| restcls2.3 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| restcls2.4 | ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) |
| restcls2.5 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) |
| Ref | Expression |
|---|---|
| restcls2 | ⊢ (𝜑 → 𝑆 = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restcls2.4 | . . . 4 ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) | |
| 2 | 1 | fveq2d 6909 | . . 3 ⊢ (𝜑 → (cls‘𝐾) = (cls‘(𝐽 ↾t 𝑌))) |
| 3 | 2 | fveq1d 6907 | . 2 ⊢ (𝜑 → ((cls‘𝐾)‘𝑆) = ((cls‘(𝐽 ↾t 𝑌))‘𝑆)) |
| 4 | restcls2.5 | . . 3 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) | |
| 5 | cldcls 23051 | . . 3 ⊢ (𝑆 ∈ (Clsd‘𝐾) → ((cls‘𝐾)‘𝑆) = 𝑆) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → ((cls‘𝐾)‘𝑆) = 𝑆) |
| 7 | restcls2.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 8 | restcls2.3 | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
| 9 | restcls2.2 | . . . 4 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) | |
| 10 | 8, 9 | sseqtrd 4019 | . . 3 ⊢ (𝜑 → 𝑌 ⊆ ∪ 𝐽) |
| 11 | 7, 9, 8, 1, 4 | restcls2lem 48817 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑌) |
| 12 | eqid 2736 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 13 | eqid 2736 | . . . 4 ⊢ (𝐽 ↾t 𝑌) = (𝐽 ↾t 𝑌) | |
| 14 | 12, 13 | restcls 23190 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ ∪ 𝐽 ∧ 𝑆 ⊆ 𝑌) → ((cls‘(𝐽 ↾t 𝑌))‘𝑆) = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) |
| 15 | 7, 10, 11, 14 | syl3anc 1372 | . 2 ⊢ (𝜑 → ((cls‘(𝐽 ↾t 𝑌))‘𝑆) = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) |
| 16 | 3, 6, 15 | 3eqtr3d 2784 | 1 ⊢ (𝜑 → 𝑆 = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∩ cin 3949 ⊆ wss 3950 ∪ cuni 4906 ‘cfv 6560 (class class class)co 7432 ↾t crest 17466 Topctop 22900 Clsdccld 23025 clsccl 23027 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-en 8987 df-fin 8990 df-fi 9452 df-rest 17468 df-topgen 17489 df-top 22901 df-topon 22918 df-bases 22954 df-cld 23028 df-cls 23030 |
| This theorem is referenced by: restclsseplem 48819 |
| Copyright terms: Public domain | W3C validator |