Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climresmpt Structured version   Visualization version   GIF version

Theorem climresmpt 45630
Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
climresmpt.z 𝑍 = (ℤ𝑀)
climresmpt.f 𝐹 = (𝑥𝑍𝐴)
climresmpt.n (𝜑𝑁𝑍)
climresmpt.g 𝐺 = (𝑥 ∈ (ℤ𝑁) ↦ 𝐴)
Assertion
Ref Expression
climresmpt (𝜑 → (𝐺𝐵𝐹𝐵))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑀(𝑥)

Proof of Theorem climresmpt
StepHypRef Expression
1 climresmpt.f . . . . . 6 𝐹 = (𝑥𝑍𝐴)
21reseq1i 5935 . . . . 5 (𝐹 ↾ (ℤ𝑁)) = ((𝑥𝑍𝐴) ↾ (ℤ𝑁))
32a1i 11 . . . 4 (𝜑 → (𝐹 ↾ (ℤ𝑁)) = ((𝑥𝑍𝐴) ↾ (ℤ𝑁)))
4 climresmpt.n . . . . . . . 8 (𝜑𝑁𝑍)
5 climresmpt.z . . . . . . . 8 𝑍 = (ℤ𝑀)
64, 5eleqtrdi 2838 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
7 uzss 12792 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
86, 7syl 17 . . . . . 6 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
98, 5sseqtrrdi 3985 . . . . 5 (𝜑 → (ℤ𝑁) ⊆ 𝑍)
10 resmpt 5997 . . . . 5 ((ℤ𝑁) ⊆ 𝑍 → ((𝑥𝑍𝐴) ↾ (ℤ𝑁)) = (𝑥 ∈ (ℤ𝑁) ↦ 𝐴))
119, 10syl 17 . . . 4 (𝜑 → ((𝑥𝑍𝐴) ↾ (ℤ𝑁)) = (𝑥 ∈ (ℤ𝑁) ↦ 𝐴))
12 climresmpt.g . . . . . 6 𝐺 = (𝑥 ∈ (ℤ𝑁) ↦ 𝐴)
1312eqcomi 2738 . . . . 5 (𝑥 ∈ (ℤ𝑁) ↦ 𝐴) = 𝐺
1413a1i 11 . . . 4 (𝜑 → (𝑥 ∈ (ℤ𝑁) ↦ 𝐴) = 𝐺)
153, 11, 143eqtrrd 2769 . . 3 (𝜑𝐺 = (𝐹 ↾ (ℤ𝑁)))
1615breq1d 5112 . 2 (𝜑 → (𝐺𝐵 ↔ (𝐹 ↾ (ℤ𝑁)) ⇝ 𝐵))
17 eluzelz 12779 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
186, 17syl 17 . . 3 (𝜑𝑁 ∈ ℤ)
195fvexi 6854 . . . . . 6 𝑍 ∈ V
2019mptex 7179 . . . . 5 (𝑥𝑍𝐴) ∈ V
2120a1i 11 . . . 4 (𝜑 → (𝑥𝑍𝐴) ∈ V)
221, 21eqeltrid 2832 . . 3 (𝜑𝐹 ∈ V)
23 climres 15517 . . 3 ((𝑁 ∈ ℤ ∧ 𝐹 ∈ V) → ((𝐹 ↾ (ℤ𝑁)) ⇝ 𝐵𝐹𝐵))
2418, 22, 23syl2anc 584 . 2 (𝜑 → ((𝐹 ↾ (ℤ𝑁)) ⇝ 𝐵𝐹𝐵))
2516, 24bitrd 279 1 (𝜑 → (𝐺𝐵𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911   class class class wbr 5102  cmpt 5183  cres 5633  cfv 6499  cz 12505  cuz 12769  cli 15426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-neg 11384  df-z 12506  df-uz 12770  df-clim 15430
This theorem is referenced by:  meaiininclem  46457
  Copyright terms: Public domain W3C validator