| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climresmpt | Structured version Visualization version GIF version | ||
| Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| climresmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climresmpt.f | ⊢ 𝐹 = (𝑥 ∈ 𝑍 ↦ 𝐴) |
| climresmpt.n | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| climresmpt.g | ⊢ 𝐺 = (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴) |
| Ref | Expression |
|---|---|
| climresmpt | ⊢ (𝜑 → (𝐺 ⇝ 𝐵 ↔ 𝐹 ⇝ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climresmpt.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑍 ↦ 𝐴) | |
| 2 | 1 | reseq1i 5931 | . . . . 5 ⊢ (𝐹 ↾ (ℤ≥‘𝑁)) = ((𝑥 ∈ 𝑍 ↦ 𝐴) ↾ (ℤ≥‘𝑁)) |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ (ℤ≥‘𝑁)) = ((𝑥 ∈ 𝑍 ↦ 𝐴) ↾ (ℤ≥‘𝑁))) |
| 4 | climresmpt.n | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
| 5 | climresmpt.z | . . . . . . . 8 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | 4, 5 | eleqtrdi 2843 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 7 | uzss 12765 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
| 9 | 8, 5 | sseqtrrdi 3972 | . . . . 5 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ 𝑍) |
| 10 | resmpt 5993 | . . . . 5 ⊢ ((ℤ≥‘𝑁) ⊆ 𝑍 → ((𝑥 ∈ 𝑍 ↦ 𝐴) ↾ (ℤ≥‘𝑁)) = (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴)) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑍 ↦ 𝐴) ↾ (ℤ≥‘𝑁)) = (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴)) |
| 12 | climresmpt.g | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴) | |
| 13 | 12 | eqcomi 2742 | . . . . 5 ⊢ (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴) = 𝐺 |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴) = 𝐺) |
| 15 | 3, 11, 14 | 3eqtrrd 2773 | . . 3 ⊢ (𝜑 → 𝐺 = (𝐹 ↾ (ℤ≥‘𝑁))) |
| 16 | 15 | breq1d 5105 | . 2 ⊢ (𝜑 → (𝐺 ⇝ 𝐵 ↔ (𝐹 ↾ (ℤ≥‘𝑁)) ⇝ 𝐵)) |
| 17 | eluzelz 12752 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 18 | 6, 17 | syl 17 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 19 | 5 | fvexi 6845 | . . . . . 6 ⊢ 𝑍 ∈ V |
| 20 | 19 | mptex 7166 | . . . . 5 ⊢ (𝑥 ∈ 𝑍 ↦ 𝐴) ∈ V |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 𝐴) ∈ V) |
| 22 | 1, 21 | eqeltrid 2837 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
| 23 | climres 15489 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ V) → ((𝐹 ↾ (ℤ≥‘𝑁)) ⇝ 𝐵 ↔ 𝐹 ⇝ 𝐵)) | |
| 24 | 18, 22, 23 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐹 ↾ (ℤ≥‘𝑁)) ⇝ 𝐵 ↔ 𝐹 ⇝ 𝐵)) |
| 25 | 16, 24 | bitrd 279 | 1 ⊢ (𝜑 → (𝐺 ⇝ 𝐵 ↔ 𝐹 ⇝ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 class class class wbr 5095 ↦ cmpt 5176 ↾ cres 5623 ‘cfv 6489 ℤcz 12479 ℤ≥cuz 12742 ⇝ cli 15398 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-pre-lttri 11091 ax-pre-lttrn 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-neg 11358 df-z 12480 df-uz 12743 df-clim 15402 |
| This theorem is referenced by: meaiininclem 46646 |
| Copyright terms: Public domain | W3C validator |