Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climresmpt Structured version   Visualization version   GIF version

Theorem climresmpt 45674
Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
climresmpt.z 𝑍 = (ℤ𝑀)
climresmpt.f 𝐹 = (𝑥𝑍𝐴)
climresmpt.n (𝜑𝑁𝑍)
climresmpt.g 𝐺 = (𝑥 ∈ (ℤ𝑁) ↦ 𝐴)
Assertion
Ref Expression
climresmpt (𝜑 → (𝐺𝐵𝐹𝐵))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑀(𝑥)

Proof of Theorem climresmpt
StepHypRef Expression
1 climresmpt.f . . . . . 6 𝐹 = (𝑥𝑍𝐴)
21reseq1i 5993 . . . . 5 (𝐹 ↾ (ℤ𝑁)) = ((𝑥𝑍𝐴) ↾ (ℤ𝑁))
32a1i 11 . . . 4 (𝜑 → (𝐹 ↾ (ℤ𝑁)) = ((𝑥𝑍𝐴) ↾ (ℤ𝑁)))
4 climresmpt.n . . . . . . . 8 (𝜑𝑁𝑍)
5 climresmpt.z . . . . . . . 8 𝑍 = (ℤ𝑀)
64, 5eleqtrdi 2851 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
7 uzss 12901 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
86, 7syl 17 . . . . . 6 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
98, 5sseqtrrdi 4025 . . . . 5 (𝜑 → (ℤ𝑁) ⊆ 𝑍)
10 resmpt 6055 . . . . 5 ((ℤ𝑁) ⊆ 𝑍 → ((𝑥𝑍𝐴) ↾ (ℤ𝑁)) = (𝑥 ∈ (ℤ𝑁) ↦ 𝐴))
119, 10syl 17 . . . 4 (𝜑 → ((𝑥𝑍𝐴) ↾ (ℤ𝑁)) = (𝑥 ∈ (ℤ𝑁) ↦ 𝐴))
12 climresmpt.g . . . . . 6 𝐺 = (𝑥 ∈ (ℤ𝑁) ↦ 𝐴)
1312eqcomi 2746 . . . . 5 (𝑥 ∈ (ℤ𝑁) ↦ 𝐴) = 𝐺
1413a1i 11 . . . 4 (𝜑 → (𝑥 ∈ (ℤ𝑁) ↦ 𝐴) = 𝐺)
153, 11, 143eqtrrd 2782 . . 3 (𝜑𝐺 = (𝐹 ↾ (ℤ𝑁)))
1615breq1d 5153 . 2 (𝜑 → (𝐺𝐵 ↔ (𝐹 ↾ (ℤ𝑁)) ⇝ 𝐵))
17 eluzelz 12888 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
186, 17syl 17 . . 3 (𝜑𝑁 ∈ ℤ)
195fvexi 6920 . . . . . 6 𝑍 ∈ V
2019mptex 7243 . . . . 5 (𝑥𝑍𝐴) ∈ V
2120a1i 11 . . . 4 (𝜑 → (𝑥𝑍𝐴) ∈ V)
221, 21eqeltrid 2845 . . 3 (𝜑𝐹 ∈ V)
23 climres 15611 . . 3 ((𝑁 ∈ ℤ ∧ 𝐹 ∈ V) → ((𝐹 ↾ (ℤ𝑁)) ⇝ 𝐵𝐹𝐵))
2418, 22, 23syl2anc 584 . 2 (𝜑 → ((𝐹 ↾ (ℤ𝑁)) ⇝ 𝐵𝐹𝐵))
2516, 24bitrd 279 1 (𝜑 → (𝐺𝐵𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951   class class class wbr 5143  cmpt 5225  cres 5687  cfv 6561  cz 12613  cuz 12878  cli 15520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-neg 11495  df-z 12614  df-uz 12879  df-clim 15524
This theorem is referenced by:  meaiininclem  46501
  Copyright terms: Public domain W3C validator