| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climresmpt | Structured version Visualization version GIF version | ||
| Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| climresmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climresmpt.f | ⊢ 𝐹 = (𝑥 ∈ 𝑍 ↦ 𝐴) |
| climresmpt.n | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| climresmpt.g | ⊢ 𝐺 = (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴) |
| Ref | Expression |
|---|---|
| climresmpt | ⊢ (𝜑 → (𝐺 ⇝ 𝐵 ↔ 𝐹 ⇝ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climresmpt.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑍 ↦ 𝐴) | |
| 2 | 1 | reseq1i 5919 | . . . . 5 ⊢ (𝐹 ↾ (ℤ≥‘𝑁)) = ((𝑥 ∈ 𝑍 ↦ 𝐴) ↾ (ℤ≥‘𝑁)) |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ (ℤ≥‘𝑁)) = ((𝑥 ∈ 𝑍 ↦ 𝐴) ↾ (ℤ≥‘𝑁))) |
| 4 | climresmpt.n | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
| 5 | climresmpt.z | . . . . . . . 8 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | 4, 5 | eleqtrdi 2841 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 7 | uzss 12750 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
| 9 | 8, 5 | sseqtrrdi 3971 | . . . . 5 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ 𝑍) |
| 10 | resmpt 5981 | . . . . 5 ⊢ ((ℤ≥‘𝑁) ⊆ 𝑍 → ((𝑥 ∈ 𝑍 ↦ 𝐴) ↾ (ℤ≥‘𝑁)) = (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴)) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑍 ↦ 𝐴) ↾ (ℤ≥‘𝑁)) = (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴)) |
| 12 | climresmpt.g | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴) | |
| 13 | 12 | eqcomi 2740 | . . . . 5 ⊢ (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴) = 𝐺 |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴) = 𝐺) |
| 15 | 3, 11, 14 | 3eqtrrd 2771 | . . 3 ⊢ (𝜑 → 𝐺 = (𝐹 ↾ (ℤ≥‘𝑁))) |
| 16 | 15 | breq1d 5096 | . 2 ⊢ (𝜑 → (𝐺 ⇝ 𝐵 ↔ (𝐹 ↾ (ℤ≥‘𝑁)) ⇝ 𝐵)) |
| 17 | eluzelz 12737 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 18 | 6, 17 | syl 17 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 19 | 5 | fvexi 6831 | . . . . . 6 ⊢ 𝑍 ∈ V |
| 20 | 19 | mptex 7152 | . . . . 5 ⊢ (𝑥 ∈ 𝑍 ↦ 𝐴) ∈ V |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 𝐴) ∈ V) |
| 22 | 1, 21 | eqeltrid 2835 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
| 23 | climres 15477 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ V) → ((𝐹 ↾ (ℤ≥‘𝑁)) ⇝ 𝐵 ↔ 𝐹 ⇝ 𝐵)) | |
| 24 | 18, 22, 23 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐹 ↾ (ℤ≥‘𝑁)) ⇝ 𝐵 ↔ 𝐹 ⇝ 𝐵)) |
| 25 | 16, 24 | bitrd 279 | 1 ⊢ (𝜑 → (𝐺 ⇝ 𝐵 ↔ 𝐹 ⇝ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 class class class wbr 5086 ↦ cmpt 5167 ↾ cres 5613 ‘cfv 6476 ℤcz 12463 ℤ≥cuz 12727 ⇝ cli 15386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-pre-lttri 11075 ax-pre-lttrn 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-neg 11342 df-z 12464 df-uz 12728 df-clim 15390 |
| This theorem is referenced by: meaiininclem 46524 |
| Copyright terms: Public domain | W3C validator |