Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climresmpt | Structured version Visualization version GIF version |
Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
climresmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climresmpt.f | ⊢ 𝐹 = (𝑥 ∈ 𝑍 ↦ 𝐴) |
climresmpt.n | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
climresmpt.g | ⊢ 𝐺 = (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴) |
Ref | Expression |
---|---|
climresmpt | ⊢ (𝜑 → (𝐺 ⇝ 𝐵 ↔ 𝐹 ⇝ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climresmpt.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑍 ↦ 𝐴) | |
2 | 1 | reseq1i 5887 | . . . . 5 ⊢ (𝐹 ↾ (ℤ≥‘𝑁)) = ((𝑥 ∈ 𝑍 ↦ 𝐴) ↾ (ℤ≥‘𝑁)) |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ (ℤ≥‘𝑁)) = ((𝑥 ∈ 𝑍 ↦ 𝐴) ↾ (ℤ≥‘𝑁))) |
4 | climresmpt.n | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
5 | climresmpt.z | . . . . . . . 8 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | 4, 5 | eleqtrdi 2849 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
7 | uzss 12605 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
9 | 8, 5 | sseqtrrdi 3972 | . . . . 5 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ 𝑍) |
10 | resmpt 5945 | . . . . 5 ⊢ ((ℤ≥‘𝑁) ⊆ 𝑍 → ((𝑥 ∈ 𝑍 ↦ 𝐴) ↾ (ℤ≥‘𝑁)) = (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴)) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑍 ↦ 𝐴) ↾ (ℤ≥‘𝑁)) = (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴)) |
12 | climresmpt.g | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴) | |
13 | 12 | eqcomi 2747 | . . . . 5 ⊢ (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴) = 𝐺 |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴) = 𝐺) |
15 | 3, 11, 14 | 3eqtrrd 2783 | . . 3 ⊢ (𝜑 → 𝐺 = (𝐹 ↾ (ℤ≥‘𝑁))) |
16 | 15 | breq1d 5084 | . 2 ⊢ (𝜑 → (𝐺 ⇝ 𝐵 ↔ (𝐹 ↾ (ℤ≥‘𝑁)) ⇝ 𝐵)) |
17 | eluzelz 12592 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
18 | 6, 17 | syl 17 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
19 | 5 | fvexi 6788 | . . . . . 6 ⊢ 𝑍 ∈ V |
20 | 19 | mptex 7099 | . . . . 5 ⊢ (𝑥 ∈ 𝑍 ↦ 𝐴) ∈ V |
21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 𝐴) ∈ V) |
22 | 1, 21 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
23 | climres 15284 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ V) → ((𝐹 ↾ (ℤ≥‘𝑁)) ⇝ 𝐵 ↔ 𝐹 ⇝ 𝐵)) | |
24 | 18, 22, 23 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐹 ↾ (ℤ≥‘𝑁)) ⇝ 𝐵 ↔ 𝐹 ⇝ 𝐵)) |
25 | 16, 24 | bitrd 278 | 1 ⊢ (𝜑 → (𝐺 ⇝ 𝐵 ↔ 𝐹 ⇝ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 class class class wbr 5074 ↦ cmpt 5157 ↾ cres 5591 ‘cfv 6433 ℤcz 12319 ℤ≥cuz 12582 ⇝ cli 15193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-neg 11208 df-z 12320 df-uz 12583 df-clim 15197 |
This theorem is referenced by: meaiininclem 44024 |
Copyright terms: Public domain | W3C validator |