Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climresmpt Structured version   Visualization version   GIF version

Theorem climresmpt 45655
Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
climresmpt.z 𝑍 = (ℤ𝑀)
climresmpt.f 𝐹 = (𝑥𝑍𝐴)
climresmpt.n (𝜑𝑁𝑍)
climresmpt.g 𝐺 = (𝑥 ∈ (ℤ𝑁) ↦ 𝐴)
Assertion
Ref Expression
climresmpt (𝜑 → (𝐺𝐵𝐹𝐵))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑀(𝑥)

Proof of Theorem climresmpt
StepHypRef Expression
1 climresmpt.f . . . . . 6 𝐹 = (𝑥𝑍𝐴)
21reseq1i 5967 . . . . 5 (𝐹 ↾ (ℤ𝑁)) = ((𝑥𝑍𝐴) ↾ (ℤ𝑁))
32a1i 11 . . . 4 (𝜑 → (𝐹 ↾ (ℤ𝑁)) = ((𝑥𝑍𝐴) ↾ (ℤ𝑁)))
4 climresmpt.n . . . . . . . 8 (𝜑𝑁𝑍)
5 climresmpt.z . . . . . . . 8 𝑍 = (ℤ𝑀)
64, 5eleqtrdi 2845 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
7 uzss 12880 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
86, 7syl 17 . . . . . 6 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
98, 5sseqtrrdi 4005 . . . . 5 (𝜑 → (ℤ𝑁) ⊆ 𝑍)
10 resmpt 6029 . . . . 5 ((ℤ𝑁) ⊆ 𝑍 → ((𝑥𝑍𝐴) ↾ (ℤ𝑁)) = (𝑥 ∈ (ℤ𝑁) ↦ 𝐴))
119, 10syl 17 . . . 4 (𝜑 → ((𝑥𝑍𝐴) ↾ (ℤ𝑁)) = (𝑥 ∈ (ℤ𝑁) ↦ 𝐴))
12 climresmpt.g . . . . . 6 𝐺 = (𝑥 ∈ (ℤ𝑁) ↦ 𝐴)
1312eqcomi 2745 . . . . 5 (𝑥 ∈ (ℤ𝑁) ↦ 𝐴) = 𝐺
1413a1i 11 . . . 4 (𝜑 → (𝑥 ∈ (ℤ𝑁) ↦ 𝐴) = 𝐺)
153, 11, 143eqtrrd 2776 . . 3 (𝜑𝐺 = (𝐹 ↾ (ℤ𝑁)))
1615breq1d 5134 . 2 (𝜑 → (𝐺𝐵 ↔ (𝐹 ↾ (ℤ𝑁)) ⇝ 𝐵))
17 eluzelz 12867 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
186, 17syl 17 . . 3 (𝜑𝑁 ∈ ℤ)
195fvexi 6895 . . . . . 6 𝑍 ∈ V
2019mptex 7220 . . . . 5 (𝑥𝑍𝐴) ∈ V
2120a1i 11 . . . 4 (𝜑 → (𝑥𝑍𝐴) ∈ V)
221, 21eqeltrid 2839 . . 3 (𝜑𝐹 ∈ V)
23 climres 15596 . . 3 ((𝑁 ∈ ℤ ∧ 𝐹 ∈ V) → ((𝐹 ↾ (ℤ𝑁)) ⇝ 𝐵𝐹𝐵))
2418, 22, 23syl2anc 584 . 2 (𝜑 → ((𝐹 ↾ (ℤ𝑁)) ⇝ 𝐵𝐹𝐵))
2516, 24bitrd 279 1 (𝜑 → (𝐺𝐵𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  Vcvv 3464  wss 3931   class class class wbr 5124  cmpt 5206  cres 5661  cfv 6536  cz 12593  cuz 12857  cli 15505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-pre-lttri 11208  ax-pre-lttrn 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-neg 11474  df-z 12594  df-uz 12858  df-clim 15509
This theorem is referenced by:  meaiininclem  46482
  Copyright terms: Public domain W3C validator