Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climresmpt | Structured version Visualization version GIF version |
Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
climresmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climresmpt.f | ⊢ 𝐹 = (𝑥 ∈ 𝑍 ↦ 𝐴) |
climresmpt.n | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
climresmpt.g | ⊢ 𝐺 = (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴) |
Ref | Expression |
---|---|
climresmpt | ⊢ (𝜑 → (𝐺 ⇝ 𝐵 ↔ 𝐹 ⇝ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climresmpt.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑍 ↦ 𝐴) | |
2 | 1 | reseq1i 5876 | . . . . 5 ⊢ (𝐹 ↾ (ℤ≥‘𝑁)) = ((𝑥 ∈ 𝑍 ↦ 𝐴) ↾ (ℤ≥‘𝑁)) |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ (ℤ≥‘𝑁)) = ((𝑥 ∈ 𝑍 ↦ 𝐴) ↾ (ℤ≥‘𝑁))) |
4 | climresmpt.n | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
5 | climresmpt.z | . . . . . . . 8 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | 4, 5 | eleqtrdi 2849 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
7 | uzss 12534 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
9 | 8, 5 | sseqtrrdi 3968 | . . . . 5 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ 𝑍) |
10 | resmpt 5934 | . . . . 5 ⊢ ((ℤ≥‘𝑁) ⊆ 𝑍 → ((𝑥 ∈ 𝑍 ↦ 𝐴) ↾ (ℤ≥‘𝑁)) = (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴)) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑍 ↦ 𝐴) ↾ (ℤ≥‘𝑁)) = (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴)) |
12 | climresmpt.g | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴) | |
13 | 12 | eqcomi 2747 | . . . . 5 ⊢ (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴) = 𝐺 |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴) = 𝐺) |
15 | 3, 11, 14 | 3eqtrrd 2783 | . . 3 ⊢ (𝜑 → 𝐺 = (𝐹 ↾ (ℤ≥‘𝑁))) |
16 | 15 | breq1d 5080 | . 2 ⊢ (𝜑 → (𝐺 ⇝ 𝐵 ↔ (𝐹 ↾ (ℤ≥‘𝑁)) ⇝ 𝐵)) |
17 | eluzelz 12521 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
18 | 6, 17 | syl 17 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
19 | 5 | fvexi 6770 | . . . . . 6 ⊢ 𝑍 ∈ V |
20 | 19 | mptex 7081 | . . . . 5 ⊢ (𝑥 ∈ 𝑍 ↦ 𝐴) ∈ V |
21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 𝐴) ∈ V) |
22 | 1, 21 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
23 | climres 15212 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ V) → ((𝐹 ↾ (ℤ≥‘𝑁)) ⇝ 𝐵 ↔ 𝐹 ⇝ 𝐵)) | |
24 | 18, 22, 23 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝐹 ↾ (ℤ≥‘𝑁)) ⇝ 𝐵 ↔ 𝐹 ⇝ 𝐵)) |
25 | 16, 24 | bitrd 278 | 1 ⊢ (𝜑 → (𝐺 ⇝ 𝐵 ↔ 𝐹 ⇝ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 ↾ cres 5582 ‘cfv 6418 ℤcz 12249 ℤ≥cuz 12511 ⇝ cli 15121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-neg 11138 df-z 12250 df-uz 12512 df-clim 15125 |
This theorem is referenced by: meaiininclem 43914 |
Copyright terms: Public domain | W3C validator |