Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climresmpt Structured version   Visualization version   GIF version

Theorem climresmpt 45697
Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
climresmpt.z 𝑍 = (ℤ𝑀)
climresmpt.f 𝐹 = (𝑥𝑍𝐴)
climresmpt.n (𝜑𝑁𝑍)
climresmpt.g 𝐺 = (𝑥 ∈ (ℤ𝑁) ↦ 𝐴)
Assertion
Ref Expression
climresmpt (𝜑 → (𝐺𝐵𝐹𝐵))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑀(𝑥)

Proof of Theorem climresmpt
StepHypRef Expression
1 climresmpt.f . . . . . 6 𝐹 = (𝑥𝑍𝐴)
21reseq1i 5919 . . . . 5 (𝐹 ↾ (ℤ𝑁)) = ((𝑥𝑍𝐴) ↾ (ℤ𝑁))
32a1i 11 . . . 4 (𝜑 → (𝐹 ↾ (ℤ𝑁)) = ((𝑥𝑍𝐴) ↾ (ℤ𝑁)))
4 climresmpt.n . . . . . . . 8 (𝜑𝑁𝑍)
5 climresmpt.z . . . . . . . 8 𝑍 = (ℤ𝑀)
64, 5eleqtrdi 2841 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
7 uzss 12750 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
86, 7syl 17 . . . . . 6 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
98, 5sseqtrrdi 3971 . . . . 5 (𝜑 → (ℤ𝑁) ⊆ 𝑍)
10 resmpt 5981 . . . . 5 ((ℤ𝑁) ⊆ 𝑍 → ((𝑥𝑍𝐴) ↾ (ℤ𝑁)) = (𝑥 ∈ (ℤ𝑁) ↦ 𝐴))
119, 10syl 17 . . . 4 (𝜑 → ((𝑥𝑍𝐴) ↾ (ℤ𝑁)) = (𝑥 ∈ (ℤ𝑁) ↦ 𝐴))
12 climresmpt.g . . . . . 6 𝐺 = (𝑥 ∈ (ℤ𝑁) ↦ 𝐴)
1312eqcomi 2740 . . . . 5 (𝑥 ∈ (ℤ𝑁) ↦ 𝐴) = 𝐺
1413a1i 11 . . . 4 (𝜑 → (𝑥 ∈ (ℤ𝑁) ↦ 𝐴) = 𝐺)
153, 11, 143eqtrrd 2771 . . 3 (𝜑𝐺 = (𝐹 ↾ (ℤ𝑁)))
1615breq1d 5096 . 2 (𝜑 → (𝐺𝐵 ↔ (𝐹 ↾ (ℤ𝑁)) ⇝ 𝐵))
17 eluzelz 12737 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
186, 17syl 17 . . 3 (𝜑𝑁 ∈ ℤ)
195fvexi 6831 . . . . . 6 𝑍 ∈ V
2019mptex 7152 . . . . 5 (𝑥𝑍𝐴) ∈ V
2120a1i 11 . . . 4 (𝜑 → (𝑥𝑍𝐴) ∈ V)
221, 21eqeltrid 2835 . . 3 (𝜑𝐹 ∈ V)
23 climres 15477 . . 3 ((𝑁 ∈ ℤ ∧ 𝐹 ∈ V) → ((𝐹 ↾ (ℤ𝑁)) ⇝ 𝐵𝐹𝐵))
2418, 22, 23syl2anc 584 . 2 (𝜑 → ((𝐹 ↾ (ℤ𝑁)) ⇝ 𝐵𝐹𝐵))
2516, 24bitrd 279 1 (𝜑 → (𝐺𝐵𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897   class class class wbr 5086  cmpt 5167  cres 5613  cfv 6476  cz 12463  cuz 12727  cli 15386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-pre-lttri 11075  ax-pre-lttrn 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-neg 11342  df-z 12464  df-uz 12728  df-clim 15390
This theorem is referenced by:  meaiininclem  46524
  Copyright terms: Public domain W3C validator