| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climconstmpt | Structured version Visualization version GIF version | ||
| Description: A constant sequence converges to its value. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| climconstmpt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climconstmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climconstmpt.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| climconstmpt | ⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstmpt 5683 | . 2 ⊢ (𝑍 × {𝐴}) = (𝑥 ∈ 𝑍 ↦ 𝐴) | |
| 2 | climconstmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 3 | climconstmpt.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 4 | climconstmpt.z | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 5 | 4 | eqcomi 2742 | . . . . 5 ⊢ (ℤ≥‘𝑀) = 𝑍 |
| 6 | ssid 3954 | . . . . 5 ⊢ 𝑍 ⊆ 𝑍 | |
| 7 | 5, 6 | eqsstri 3978 | . . . 4 ⊢ (ℤ≥‘𝑀) ⊆ 𝑍 |
| 8 | 4 | fvexi 6845 | . . . 4 ⊢ 𝑍 ∈ V |
| 9 | 7, 8 | climconst2 15465 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝐴}) ⇝ 𝐴) |
| 10 | 2, 3, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑍 × {𝐴}) ⇝ 𝐴) |
| 11 | 1, 10 | eqbrtrrid 5131 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {csn 4577 class class class wbr 5095 ↦ cmpt 5176 × cxp 5619 ‘cfv 6489 ℂcc 11014 ℤcz 12478 ℤ≥cuz 12742 ⇝ cli 15401 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-n0 12392 df-z 12479 df-uz 12743 df-rp 12901 df-seq 13919 df-exp 13979 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 df-clim 15405 |
| This theorem is referenced by: climsubc2mpt 45773 climsubc1mpt 45774 |
| Copyright terms: Public domain | W3C validator |