Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climconstmpt Structured version   Visualization version   GIF version

Theorem climconstmpt 44374
Description: A constant sequence converges to its value. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
climconstmpt.m (𝜑𝑀 ∈ ℤ)
climconstmpt.z 𝑍 = (ℤ𝑀)
climconstmpt.a (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
climconstmpt (𝜑 → (𝑥𝑍𝐴) ⇝ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝑀(𝑥)

Proof of Theorem climconstmpt
StepHypRef Expression
1 fconstmpt 5739 . 2 (𝑍 × {𝐴}) = (𝑥𝑍𝐴)
2 climconstmpt.a . . 3 (𝜑𝐴 ∈ ℂ)
3 climconstmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
4 climconstmpt.z . . . . . 6 𝑍 = (ℤ𝑀)
54eqcomi 2742 . . . . 5 (ℤ𝑀) = 𝑍
6 ssid 4005 . . . . 5 𝑍𝑍
75, 6eqsstri 4017 . . . 4 (ℤ𝑀) ⊆ 𝑍
84fvexi 6906 . . . 4 𝑍 ∈ V
97, 8climconst2 15492 . . 3 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝐴}) ⇝ 𝐴)
102, 3, 9syl2anc 585 . 2 (𝜑 → (𝑍 × {𝐴}) ⇝ 𝐴)
111, 10eqbrtrrid 5185 1 (𝜑 → (𝑥𝑍𝐴) ⇝ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  {csn 4629   class class class wbr 5149  cmpt 5232   × cxp 5675  cfv 6544  cc 11108  cz 12558  cuz 12822  cli 15428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-seq 13967  df-exp 14028  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432
This theorem is referenced by:  climsubc2mpt  44377  climsubc1mpt  44378
  Copyright terms: Public domain W3C validator