Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climuz Structured version   Visualization version   GIF version

Theorem climuz 43975
Description: Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
climuz.k 𝑘𝐹
climuz.m (𝜑𝑀 ∈ ℤ)
climuz.z 𝑍 = (ℤ𝑀)
climuz.f (𝜑𝐹:𝑍⟶ℂ)
Assertion
Ref Expression
climuz (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑗,𝐹,𝑥   𝑗,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑥,𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem climuz
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climuz.m . . 3 (𝜑𝑀 ∈ ℤ)
2 climuz.z . . 3 𝑍 = (ℤ𝑀)
3 climuz.f . . 3 (𝜑𝐹:𝑍⟶ℂ)
41, 2, 3climuzlem 43974 . 2 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦)))
5 breq2 5109 . . . . . . . 8 (𝑦 = 𝑥 → ((abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ (abs‘((𝐹𝑙) − 𝐴)) < 𝑥))
65ralbidv 3174 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ ∀𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥))
76rexbidv 3175 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥))
8 fveq2 6842 . . . . . . . . . 10 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
98raleqdv 3313 . . . . . . . . 9 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∀𝑙 ∈ (ℤ𝑗)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥))
10 nfcv 2907 . . . . . . . . . . . . 13 𝑘abs
11 climuz.k . . . . . . . . . . . . . . 15 𝑘𝐹
12 nfcv 2907 . . . . . . . . . . . . . . 15 𝑘𝑙
1311, 12nffv 6852 . . . . . . . . . . . . . 14 𝑘(𝐹𝑙)
14 nfcv 2907 . . . . . . . . . . . . . 14 𝑘
15 nfcv 2907 . . . . . . . . . . . . . 14 𝑘𝐴
1613, 14, 15nfov 7387 . . . . . . . . . . . . 13 𝑘((𝐹𝑙) − 𝐴)
1710, 16nffv 6852 . . . . . . . . . . . 12 𝑘(abs‘((𝐹𝑙) − 𝐴))
18 nfcv 2907 . . . . . . . . . . . 12 𝑘 <
19 nfcv 2907 . . . . . . . . . . . 12 𝑘𝑥
2017, 18, 19nfbr 5152 . . . . . . . . . . 11 𝑘(abs‘((𝐹𝑙) − 𝐴)) < 𝑥
21 nfv 1917 . . . . . . . . . . 11 𝑙(abs‘((𝐹𝑘) − 𝐴)) < 𝑥
22 fveq2 6842 . . . . . . . . . . . . 13 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
2322fvoveq1d 7379 . . . . . . . . . . . 12 (𝑙 = 𝑘 → (abs‘((𝐹𝑙) − 𝐴)) = (abs‘((𝐹𝑘) − 𝐴)))
2423breq1d 5115 . . . . . . . . . . 11 (𝑙 = 𝑘 → ((abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
2520, 21, 24cbvralw 3289 . . . . . . . . . 10 (∀𝑙 ∈ (ℤ𝑗)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
2625a1i 11 . . . . . . . . 9 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑗)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
279, 26bitrd 278 . . . . . . . 8 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
2827cbvrexvw 3226 . . . . . . 7 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
2928a1i 11 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
307, 29bitrd 278 . . . . 5 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
3130cbvralvw 3225 . . . 4 (∀𝑦 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
3231anbi2i 623 . . 3 ((𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
3332a1i 11 . 2 (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
344, 33bitrd 278 1 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wnfc 2887  wral 3064  wrex 3073   class class class wbr 5105  wf 6492  cfv 6496  (class class class)co 7357  cc 11049   < clt 11189  cmin 11385  cz 12499  cuz 12763  +crp 12915  abscabs 15119  cli 15366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-pre-lttri 11125  ax-pre-lttrn 11126
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-neg 11388  df-z 12500  df-uz 12764  df-clim 15370
This theorem is referenced by:  liminflimsupclim  44038  climxlim2lem  44076
  Copyright terms: Public domain W3C validator