Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climuz Structured version   Visualization version   GIF version

Theorem climuz 45729
Description: Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
climuz.k 𝑘𝐹
climuz.m (𝜑𝑀 ∈ ℤ)
climuz.z 𝑍 = (ℤ𝑀)
climuz.f (𝜑𝐹:𝑍⟶ℂ)
Assertion
Ref Expression
climuz (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑗,𝐹,𝑥   𝑗,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑥,𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem climuz
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climuz.m . . 3 (𝜑𝑀 ∈ ℤ)
2 climuz.z . . 3 𝑍 = (ℤ𝑀)
3 climuz.f . . 3 (𝜑𝐹:𝑍⟶ℂ)
41, 2, 3climuzlem 45728 . 2 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦)))
5 breq2 5099 . . . . . . . 8 (𝑦 = 𝑥 → ((abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ (abs‘((𝐹𝑙) − 𝐴)) < 𝑥))
65ralbidv 3152 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ ∀𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥))
76rexbidv 3153 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥))
8 fveq2 6826 . . . . . . . . . 10 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
98raleqdv 3290 . . . . . . . . 9 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∀𝑙 ∈ (ℤ𝑗)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥))
10 nfcv 2891 . . . . . . . . . . . . 13 𝑘abs
11 climuz.k . . . . . . . . . . . . . . 15 𝑘𝐹
12 nfcv 2891 . . . . . . . . . . . . . . 15 𝑘𝑙
1311, 12nffv 6836 . . . . . . . . . . . . . 14 𝑘(𝐹𝑙)
14 nfcv 2891 . . . . . . . . . . . . . 14 𝑘
15 nfcv 2891 . . . . . . . . . . . . . 14 𝑘𝐴
1613, 14, 15nfov 7383 . . . . . . . . . . . . 13 𝑘((𝐹𝑙) − 𝐴)
1710, 16nffv 6836 . . . . . . . . . . . 12 𝑘(abs‘((𝐹𝑙) − 𝐴))
18 nfcv 2891 . . . . . . . . . . . 12 𝑘 <
19 nfcv 2891 . . . . . . . . . . . 12 𝑘𝑥
2017, 18, 19nfbr 5142 . . . . . . . . . . 11 𝑘(abs‘((𝐹𝑙) − 𝐴)) < 𝑥
21 nfv 1914 . . . . . . . . . . 11 𝑙(abs‘((𝐹𝑘) − 𝐴)) < 𝑥
22 fveq2 6826 . . . . . . . . . . . . 13 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
2322fvoveq1d 7375 . . . . . . . . . . . 12 (𝑙 = 𝑘 → (abs‘((𝐹𝑙) − 𝐴)) = (abs‘((𝐹𝑘) − 𝐴)))
2423breq1d 5105 . . . . . . . . . . 11 (𝑙 = 𝑘 → ((abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
2520, 21, 24cbvralw 3272 . . . . . . . . . 10 (∀𝑙 ∈ (ℤ𝑗)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
2625a1i 11 . . . . . . . . 9 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑗)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
279, 26bitrd 279 . . . . . . . 8 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
2827cbvrexvw 3208 . . . . . . 7 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
2928a1i 11 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
307, 29bitrd 279 . . . . 5 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
3130cbvralvw 3207 . . . 4 (∀𝑦 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
3231anbi2i 623 . . 3 ((𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
3332a1i 11 . 2 (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
344, 33bitrd 279 1 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wnfc 2876  wral 3044  wrex 3053   class class class wbr 5095  wf 6482  cfv 6486  (class class class)co 7353  cc 11026   < clt 11168  cmin 11365  cz 12489  cuz 12753  +crp 12911  abscabs 15159  cli 15409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-neg 11368  df-z 12490  df-uz 12754  df-clim 15413
This theorem is referenced by:  liminflimsupclim  45792  climxlim2lem  45830
  Copyright terms: Public domain W3C validator