Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climuz Structured version   Visualization version   GIF version

Theorem climuz 45788
Description: Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
climuz.k 𝑘𝐹
climuz.m (𝜑𝑀 ∈ ℤ)
climuz.z 𝑍 = (ℤ𝑀)
climuz.f (𝜑𝐹:𝑍⟶ℂ)
Assertion
Ref Expression
climuz (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑗,𝐹,𝑥   𝑗,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑥,𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem climuz
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climuz.m . . 3 (𝜑𝑀 ∈ ℤ)
2 climuz.z . . 3 𝑍 = (ℤ𝑀)
3 climuz.f . . 3 (𝜑𝐹:𝑍⟶ℂ)
41, 2, 3climuzlem 45787 . 2 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦)))
5 breq2 5095 . . . . . . . 8 (𝑦 = 𝑥 → ((abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ (abs‘((𝐹𝑙) − 𝐴)) < 𝑥))
65ralbidv 3155 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ ∀𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥))
76rexbidv 3156 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥))
8 fveq2 6822 . . . . . . . . . 10 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
98raleqdv 3292 . . . . . . . . 9 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∀𝑙 ∈ (ℤ𝑗)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥))
10 nfcv 2894 . . . . . . . . . . . . 13 𝑘abs
11 climuz.k . . . . . . . . . . . . . . 15 𝑘𝐹
12 nfcv 2894 . . . . . . . . . . . . . . 15 𝑘𝑙
1311, 12nffv 6832 . . . . . . . . . . . . . 14 𝑘(𝐹𝑙)
14 nfcv 2894 . . . . . . . . . . . . . 14 𝑘
15 nfcv 2894 . . . . . . . . . . . . . 14 𝑘𝐴
1613, 14, 15nfov 7376 . . . . . . . . . . . . 13 𝑘((𝐹𝑙) − 𝐴)
1710, 16nffv 6832 . . . . . . . . . . . 12 𝑘(abs‘((𝐹𝑙) − 𝐴))
18 nfcv 2894 . . . . . . . . . . . 12 𝑘 <
19 nfcv 2894 . . . . . . . . . . . 12 𝑘𝑥
2017, 18, 19nfbr 5138 . . . . . . . . . . 11 𝑘(abs‘((𝐹𝑙) − 𝐴)) < 𝑥
21 nfv 1915 . . . . . . . . . . 11 𝑙(abs‘((𝐹𝑘) − 𝐴)) < 𝑥
22 fveq2 6822 . . . . . . . . . . . . 13 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
2322fvoveq1d 7368 . . . . . . . . . . . 12 (𝑙 = 𝑘 → (abs‘((𝐹𝑙) − 𝐴)) = (abs‘((𝐹𝑘) − 𝐴)))
2423breq1d 5101 . . . . . . . . . . 11 (𝑙 = 𝑘 → ((abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
2520, 21, 24cbvralw 3274 . . . . . . . . . 10 (∀𝑙 ∈ (ℤ𝑗)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
2625a1i 11 . . . . . . . . 9 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑗)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
279, 26bitrd 279 . . . . . . . 8 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
2827cbvrexvw 3211 . . . . . . 7 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
2928a1i 11 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
307, 29bitrd 279 . . . . 5 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
3130cbvralvw 3210 . . . 4 (∀𝑦 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
3231anbi2i 623 . . 3 ((𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
3332a1i 11 . 2 (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
344, 33bitrd 279 1 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wnfc 2879  wral 3047  wrex 3056   class class class wbr 5091  wf 6477  cfv 6481  (class class class)co 7346  cc 11004   < clt 11146  cmin 11344  cz 12468  cuz 12732  +crp 12890  abscabs 15141  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-neg 11347  df-z 12469  df-uz 12733  df-clim 15395
This theorem is referenced by:  liminflimsupclim  45851  climxlim2lem  45889
  Copyright terms: Public domain W3C validator