Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climuz Structured version   Visualization version   GIF version

Theorem climuz 45773
Description: Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
climuz.k 𝑘𝐹
climuz.m (𝜑𝑀 ∈ ℤ)
climuz.z 𝑍 = (ℤ𝑀)
climuz.f (𝜑𝐹:𝑍⟶ℂ)
Assertion
Ref Expression
climuz (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑗,𝐹,𝑥   𝑗,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑥,𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem climuz
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climuz.m . . 3 (𝜑𝑀 ∈ ℤ)
2 climuz.z . . 3 𝑍 = (ℤ𝑀)
3 climuz.f . . 3 (𝜑𝐹:𝑍⟶ℂ)
41, 2, 3climuzlem 45772 . 2 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦)))
5 breq2 5123 . . . . . . . 8 (𝑦 = 𝑥 → ((abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ (abs‘((𝐹𝑙) − 𝐴)) < 𝑥))
65ralbidv 3163 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ ∀𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥))
76rexbidv 3164 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥))
8 fveq2 6876 . . . . . . . . . 10 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
98raleqdv 3305 . . . . . . . . 9 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∀𝑙 ∈ (ℤ𝑗)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥))
10 nfcv 2898 . . . . . . . . . . . . 13 𝑘abs
11 climuz.k . . . . . . . . . . . . . . 15 𝑘𝐹
12 nfcv 2898 . . . . . . . . . . . . . . 15 𝑘𝑙
1311, 12nffv 6886 . . . . . . . . . . . . . 14 𝑘(𝐹𝑙)
14 nfcv 2898 . . . . . . . . . . . . . 14 𝑘
15 nfcv 2898 . . . . . . . . . . . . . 14 𝑘𝐴
1613, 14, 15nfov 7435 . . . . . . . . . . . . 13 𝑘((𝐹𝑙) − 𝐴)
1710, 16nffv 6886 . . . . . . . . . . . 12 𝑘(abs‘((𝐹𝑙) − 𝐴))
18 nfcv 2898 . . . . . . . . . . . 12 𝑘 <
19 nfcv 2898 . . . . . . . . . . . 12 𝑘𝑥
2017, 18, 19nfbr 5166 . . . . . . . . . . 11 𝑘(abs‘((𝐹𝑙) − 𝐴)) < 𝑥
21 nfv 1914 . . . . . . . . . . 11 𝑙(abs‘((𝐹𝑘) − 𝐴)) < 𝑥
22 fveq2 6876 . . . . . . . . . . . . 13 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
2322fvoveq1d 7427 . . . . . . . . . . . 12 (𝑙 = 𝑘 → (abs‘((𝐹𝑙) − 𝐴)) = (abs‘((𝐹𝑘) − 𝐴)))
2423breq1d 5129 . . . . . . . . . . 11 (𝑙 = 𝑘 → ((abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
2520, 21, 24cbvralw 3286 . . . . . . . . . 10 (∀𝑙 ∈ (ℤ𝑗)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
2625a1i 11 . . . . . . . . 9 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑗)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
279, 26bitrd 279 . . . . . . . 8 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
2827cbvrexvw 3221 . . . . . . 7 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
2928a1i 11 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
307, 29bitrd 279 . . . . 5 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
3130cbvralvw 3220 . . . 4 (∀𝑦 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
3231anbi2i 623 . . 3 ((𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
3332a1i 11 . 2 (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
344, 33bitrd 279 1 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wnfc 2883  wral 3051  wrex 3060   class class class wbr 5119  wf 6527  cfv 6531  (class class class)co 7405  cc 11127   < clt 11269  cmin 11466  cz 12588  cuz 12852  +crp 13008  abscabs 15253  cli 15500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-neg 11469  df-z 12589  df-uz 12853  df-clim 15504
This theorem is referenced by:  liminflimsupclim  45836  climxlim2lem  45874
  Copyright terms: Public domain W3C validator