Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climuz Structured version   Visualization version   GIF version

Theorem climuz 42386
Description: Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
climuz.k 𝑘𝐹
climuz.m (𝜑𝑀 ∈ ℤ)
climuz.z 𝑍 = (ℤ𝑀)
climuz.f (𝜑𝐹:𝑍⟶ℂ)
Assertion
Ref Expression
climuz (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑗,𝐹,𝑥   𝑗,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑥,𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem climuz
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climuz.m . . 3 (𝜑𝑀 ∈ ℤ)
2 climuz.z . . 3 𝑍 = (ℤ𝑀)
3 climuz.f . . 3 (𝜑𝐹:𝑍⟶ℂ)
41, 2, 3climuzlem 42385 . 2 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦)))
5 breq2 5034 . . . . . . . 8 (𝑦 = 𝑥 → ((abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ (abs‘((𝐹𝑙) − 𝐴)) < 𝑥))
65ralbidv 3162 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ ∀𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥))
76rexbidv 3256 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥))
8 fveq2 6645 . . . . . . . . . 10 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
98raleqdv 3364 . . . . . . . . 9 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∀𝑙 ∈ (ℤ𝑗)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥))
10 nfcv 2955 . . . . . . . . . . . . 13 𝑘abs
11 climuz.k . . . . . . . . . . . . . . 15 𝑘𝐹
12 nfcv 2955 . . . . . . . . . . . . . . 15 𝑘𝑙
1311, 12nffv 6655 . . . . . . . . . . . . . 14 𝑘(𝐹𝑙)
14 nfcv 2955 . . . . . . . . . . . . . 14 𝑘
15 nfcv 2955 . . . . . . . . . . . . . 14 𝑘𝐴
1613, 14, 15nfov 7165 . . . . . . . . . . . . 13 𝑘((𝐹𝑙) − 𝐴)
1710, 16nffv 6655 . . . . . . . . . . . 12 𝑘(abs‘((𝐹𝑙) − 𝐴))
18 nfcv 2955 . . . . . . . . . . . 12 𝑘 <
19 nfcv 2955 . . . . . . . . . . . 12 𝑘𝑥
2017, 18, 19nfbr 5077 . . . . . . . . . . 11 𝑘(abs‘((𝐹𝑙) − 𝐴)) < 𝑥
21 nfv 1915 . . . . . . . . . . 11 𝑙(abs‘((𝐹𝑘) − 𝐴)) < 𝑥
22 fveq2 6645 . . . . . . . . . . . . 13 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
2322fvoveq1d 7157 . . . . . . . . . . . 12 (𝑙 = 𝑘 → (abs‘((𝐹𝑙) − 𝐴)) = (abs‘((𝐹𝑘) − 𝐴)))
2423breq1d 5040 . . . . . . . . . . 11 (𝑙 = 𝑘 → ((abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
2520, 21, 24cbvralw 3387 . . . . . . . . . 10 (∀𝑙 ∈ (ℤ𝑗)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
2625a1i 11 . . . . . . . . 9 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑗)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
279, 26bitrd 282 . . . . . . . 8 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
2827cbvrexvw 3397 . . . . . . 7 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
2928a1i 11 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
307, 29bitrd 282 . . . . 5 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
3130cbvralvw 3396 . . . 4 (∀𝑦 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
3231anbi2i 625 . . 3 ((𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
3332a1i 11 . 2 (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑖𝑍𝑙 ∈ (ℤ𝑖)(abs‘((𝐹𝑙) − 𝐴)) < 𝑦) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
344, 33bitrd 282 1 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wnfc 2936  wral 3106  wrex 3107   class class class wbr 5030  wf 6320  cfv 6324  (class class class)co 7135  cc 10524   < clt 10664  cmin 10859  cz 11969  cuz 12231  +crp 12377  abscabs 14585  cli 14833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-neg 10862  df-z 11970  df-uz 12232  df-clim 14837
This theorem is referenced by:  liminflimsupclim  42449  climxlim2lem  42487
  Copyright terms: Public domain W3C validator