Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dif1ennn | Structured version Visualization version GIF version |
Description: If a set 𝐴 is equinumerous to the successor of a natural number 𝑀, then 𝐴 with an element removed is equinumerous to 𝑀. See also dif1ennnALT 9120. (Contributed by BTernaryTau, 6-Jan-2025.) |
Ref | Expression |
---|---|
dif1ennn | ⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7764 | . 2 ⊢ (𝑀 ∈ ω → 𝑀 ∈ On) | |
2 | dif1en 9003 | . 2 ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) | |
3 | 1, 2 | syl3an1 1162 | 1 ⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2105 ∖ cdif 3893 {csn 4570 class class class wbr 5086 Oncon0 6288 suc csuc 6290 ωcom 7758 ≈ cen 8779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-ord 6291 df-on 6292 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-om 7759 df-en 8783 |
This theorem is referenced by: findcard 9006 phplem1 9050 enp1iOLD 9123 en2eleq 9843 en2other2 9844 mreexexlem4d 17430 f1otrspeq 19128 pmtrf 19136 pmtrmvd 19137 pmtrfinv 19142 |
Copyright terms: Public domain | W3C validator |