MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restfpw Structured version   Visualization version   GIF version

Theorem restfpw 23095
Description: The restriction of the set of finite subsets of 𝐴 is the set of finite subsets of 𝐵. (Contributed by Mario Carneiro, 18-Sep-2015.)
Assertion
Ref Expression
restfpw ((𝐴𝑉𝐵𝐴) → ((𝒫 𝐴 ∩ Fin) ↾t 𝐵) = (𝒫 𝐵 ∩ Fin))

Proof of Theorem restfpw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwexg 5318 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
21adantr 480 . . . . 5 ((𝐴𝑉𝐵𝐴) → 𝒫 𝐴 ∈ V)
3 inex1g 5259 . . . . 5 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
42, 3syl 17 . . . 4 ((𝐴𝑉𝐵𝐴) → (𝒫 𝐴 ∩ Fin) ∈ V)
5 ssexg 5263 . . . . 5 ((𝐵𝐴𝐴𝑉) → 𝐵 ∈ V)
65ancoms 458 . . . 4 ((𝐴𝑉𝐵𝐴) → 𝐵 ∈ V)
7 restval 17332 . . . 4 (((𝒫 𝐴 ∩ Fin) ∈ V ∧ 𝐵 ∈ V) → ((𝒫 𝐴 ∩ Fin) ↾t 𝐵) = ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑥𝐵)))
84, 6, 7syl2anc 584 . . 3 ((𝐴𝑉𝐵𝐴) → ((𝒫 𝐴 ∩ Fin) ↾t 𝐵) = ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑥𝐵)))
9 inss2 4187 . . . . . . 7 (𝑥𝐵) ⊆ 𝐵
109a1i 11 . . . . . 6 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝐵) ⊆ 𝐵)
11 elinel2 4151 . . . . . . . 8 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
1211adantl 481 . . . . . . 7 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
13 inss1 4186 . . . . . . 7 (𝑥𝐵) ⊆ 𝑥
14 ssfi 9089 . . . . . . 7 ((𝑥 ∈ Fin ∧ (𝑥𝐵) ⊆ 𝑥) → (𝑥𝐵) ∈ Fin)
1512, 13, 14sylancl 586 . . . . . 6 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝐵) ∈ Fin)
16 elfpw 9245 . . . . . 6 ((𝑥𝐵) ∈ (𝒫 𝐵 ∩ Fin) ↔ ((𝑥𝐵) ⊆ 𝐵 ∧ (𝑥𝐵) ∈ Fin))
1710, 15, 16sylanbrc 583 . . . . 5 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝐵) ∈ (𝒫 𝐵 ∩ Fin))
1817fmpttd 7054 . . . 4 ((𝐴𝑉𝐵𝐴) → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑥𝐵)):(𝒫 𝐴 ∩ Fin)⟶(𝒫 𝐵 ∩ Fin))
1918frnd 6664 . . 3 ((𝐴𝑉𝐵𝐴) → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑥𝐵)) ⊆ (𝒫 𝐵 ∩ Fin))
208, 19eqsstrd 3965 . 2 ((𝐴𝑉𝐵𝐴) → ((𝒫 𝐴 ∩ Fin) ↾t 𝐵) ⊆ (𝒫 𝐵 ∩ Fin))
21 elfpw 9245 . . . . . 6 (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝑥𝐵𝑥 ∈ Fin))
2221simplbi 497 . . . . 5 (𝑥 ∈ (𝒫 𝐵 ∩ Fin) → 𝑥𝐵)
2322adantl 481 . . . 4 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑥𝐵)
24 dfss2 3916 . . . 4 (𝑥𝐵 ↔ (𝑥𝐵) = 𝑥)
2523, 24sylib 218 . . 3 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → (𝑥𝐵) = 𝑥)
264adantr 480 . . . 4 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → (𝒫 𝐴 ∩ Fin) ∈ V)
276adantr 480 . . . 4 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝐵 ∈ V)
28 simplr 768 . . . . . 6 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝐵𝐴)
2923, 28sstrd 3941 . . . . 5 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑥𝐴)
30 elinel2 4151 . . . . . 6 (𝑥 ∈ (𝒫 𝐵 ∩ Fin) → 𝑥 ∈ Fin)
3130adantl 481 . . . . 5 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑥 ∈ Fin)
32 elfpw 9245 . . . . 5 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑥𝐴𝑥 ∈ Fin))
3329, 31, 32sylanbrc 583 . . . 4 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
34 elrestr 17334 . . . 4 (((𝒫 𝐴 ∩ Fin) ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝐵) ∈ ((𝒫 𝐴 ∩ Fin) ↾t 𝐵))
3526, 27, 33, 34syl3anc 1373 . . 3 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → (𝑥𝐵) ∈ ((𝒫 𝐴 ∩ Fin) ↾t 𝐵))
3625, 35eqeltrrd 2834 . 2 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ↾t 𝐵))
3720, 36eqelssd 3952 1 ((𝐴𝑉𝐵𝐴) → ((𝒫 𝐴 ∩ Fin) ↾t 𝐵) = (𝒫 𝐵 ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cin 3897  wss 3898  𝒫 cpw 4549  cmpt 5174  ran crn 5620  (class class class)co 7352  Fincfn 8875  t crest 17326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1o 8391  df-en 8876  df-fin 8879  df-rest 17328
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator