MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restfpw Structured version   Visualization version   GIF version

Theorem restfpw 23187
Description: The restriction of the set of finite subsets of 𝐴 is the set of finite subsets of 𝐵. (Contributed by Mario Carneiro, 18-Sep-2015.)
Assertion
Ref Expression
restfpw ((𝐴𝑉𝐵𝐴) → ((𝒫 𝐴 ∩ Fin) ↾t 𝐵) = (𝒫 𝐵 ∩ Fin))

Proof of Theorem restfpw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwexg 5378 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
21adantr 480 . . . . 5 ((𝐴𝑉𝐵𝐴) → 𝒫 𝐴 ∈ V)
3 inex1g 5319 . . . . 5 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
42, 3syl 17 . . . 4 ((𝐴𝑉𝐵𝐴) → (𝒫 𝐴 ∩ Fin) ∈ V)
5 ssexg 5323 . . . . 5 ((𝐵𝐴𝐴𝑉) → 𝐵 ∈ V)
65ancoms 458 . . . 4 ((𝐴𝑉𝐵𝐴) → 𝐵 ∈ V)
7 restval 17471 . . . 4 (((𝒫 𝐴 ∩ Fin) ∈ V ∧ 𝐵 ∈ V) → ((𝒫 𝐴 ∩ Fin) ↾t 𝐵) = ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑥𝐵)))
84, 6, 7syl2anc 584 . . 3 ((𝐴𝑉𝐵𝐴) → ((𝒫 𝐴 ∩ Fin) ↾t 𝐵) = ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑥𝐵)))
9 inss2 4238 . . . . . . 7 (𝑥𝐵) ⊆ 𝐵
109a1i 11 . . . . . 6 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝐵) ⊆ 𝐵)
11 elinel2 4202 . . . . . . . 8 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
1211adantl 481 . . . . . . 7 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
13 inss1 4237 . . . . . . 7 (𝑥𝐵) ⊆ 𝑥
14 ssfi 9213 . . . . . . 7 ((𝑥 ∈ Fin ∧ (𝑥𝐵) ⊆ 𝑥) → (𝑥𝐵) ∈ Fin)
1512, 13, 14sylancl 586 . . . . . 6 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝐵) ∈ Fin)
16 elfpw 9394 . . . . . 6 ((𝑥𝐵) ∈ (𝒫 𝐵 ∩ Fin) ↔ ((𝑥𝐵) ⊆ 𝐵 ∧ (𝑥𝐵) ∈ Fin))
1710, 15, 16sylanbrc 583 . . . . 5 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝐵) ∈ (𝒫 𝐵 ∩ Fin))
1817fmpttd 7135 . . . 4 ((𝐴𝑉𝐵𝐴) → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑥𝐵)):(𝒫 𝐴 ∩ Fin)⟶(𝒫 𝐵 ∩ Fin))
1918frnd 6744 . . 3 ((𝐴𝑉𝐵𝐴) → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑥𝐵)) ⊆ (𝒫 𝐵 ∩ Fin))
208, 19eqsstrd 4018 . 2 ((𝐴𝑉𝐵𝐴) → ((𝒫 𝐴 ∩ Fin) ↾t 𝐵) ⊆ (𝒫 𝐵 ∩ Fin))
21 elfpw 9394 . . . . . 6 (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝑥𝐵𝑥 ∈ Fin))
2221simplbi 497 . . . . 5 (𝑥 ∈ (𝒫 𝐵 ∩ Fin) → 𝑥𝐵)
2322adantl 481 . . . 4 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑥𝐵)
24 dfss2 3969 . . . 4 (𝑥𝐵 ↔ (𝑥𝐵) = 𝑥)
2523, 24sylib 218 . . 3 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → (𝑥𝐵) = 𝑥)
264adantr 480 . . . 4 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → (𝒫 𝐴 ∩ Fin) ∈ V)
276adantr 480 . . . 4 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝐵 ∈ V)
28 simplr 769 . . . . . 6 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝐵𝐴)
2923, 28sstrd 3994 . . . . 5 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑥𝐴)
30 elinel2 4202 . . . . . 6 (𝑥 ∈ (𝒫 𝐵 ∩ Fin) → 𝑥 ∈ Fin)
3130adantl 481 . . . . 5 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑥 ∈ Fin)
32 elfpw 9394 . . . . 5 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑥𝐴𝑥 ∈ Fin))
3329, 31, 32sylanbrc 583 . . . 4 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
34 elrestr 17473 . . . 4 (((𝒫 𝐴 ∩ Fin) ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝐵) ∈ ((𝒫 𝐴 ∩ Fin) ↾t 𝐵))
3526, 27, 33, 34syl3anc 1373 . . 3 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → (𝑥𝐵) ∈ ((𝒫 𝐴 ∩ Fin) ↾t 𝐵))
3625, 35eqeltrrd 2842 . 2 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ↾t 𝐵))
3720, 36eqelssd 4005 1 ((𝐴𝑉𝐵𝐴) → ((𝒫 𝐴 ∩ Fin) ↾t 𝐵) = (𝒫 𝐵 ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  cin 3950  wss 3951  𝒫 cpw 4600  cmpt 5225  ran crn 5686  (class class class)co 7431  Fincfn 8985  t crest 17465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1o 8506  df-en 8986  df-fin 8989  df-rest 17467
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator