MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restfpw Structured version   Visualization version   GIF version

Theorem restfpw 22330
Description: The restriction of the set of finite subsets of 𝐴 is the set of finite subsets of 𝐵. (Contributed by Mario Carneiro, 18-Sep-2015.)
Assertion
Ref Expression
restfpw ((𝐴𝑉𝐵𝐴) → ((𝒫 𝐴 ∩ Fin) ↾t 𝐵) = (𝒫 𝐵 ∩ Fin))

Proof of Theorem restfpw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwexg 5301 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
21adantr 481 . . . . 5 ((𝐴𝑉𝐵𝐴) → 𝒫 𝐴 ∈ V)
3 inex1g 5243 . . . . 5 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
42, 3syl 17 . . . 4 ((𝐴𝑉𝐵𝐴) → (𝒫 𝐴 ∩ Fin) ∈ V)
5 ssexg 5247 . . . . 5 ((𝐵𝐴𝐴𝑉) → 𝐵 ∈ V)
65ancoms 459 . . . 4 ((𝐴𝑉𝐵𝐴) → 𝐵 ∈ V)
7 restval 17137 . . . 4 (((𝒫 𝐴 ∩ Fin) ∈ V ∧ 𝐵 ∈ V) → ((𝒫 𝐴 ∩ Fin) ↾t 𝐵) = ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑥𝐵)))
84, 6, 7syl2anc 584 . . 3 ((𝐴𝑉𝐵𝐴) → ((𝒫 𝐴 ∩ Fin) ↾t 𝐵) = ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑥𝐵)))
9 inss2 4163 . . . . . . 7 (𝑥𝐵) ⊆ 𝐵
109a1i 11 . . . . . 6 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝐵) ⊆ 𝐵)
11 elinel2 4130 . . . . . . . 8 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
1211adantl 482 . . . . . . 7 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
13 inss1 4162 . . . . . . 7 (𝑥𝐵) ⊆ 𝑥
14 ssfi 8956 . . . . . . 7 ((𝑥 ∈ Fin ∧ (𝑥𝐵) ⊆ 𝑥) → (𝑥𝐵) ∈ Fin)
1512, 13, 14sylancl 586 . . . . . 6 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝐵) ∈ Fin)
16 elfpw 9121 . . . . . 6 ((𝑥𝐵) ∈ (𝒫 𝐵 ∩ Fin) ↔ ((𝑥𝐵) ⊆ 𝐵 ∧ (𝑥𝐵) ∈ Fin))
1710, 15, 16sylanbrc 583 . . . . 5 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝐵) ∈ (𝒫 𝐵 ∩ Fin))
1817fmpttd 6989 . . . 4 ((𝐴𝑉𝐵𝐴) → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑥𝐵)):(𝒫 𝐴 ∩ Fin)⟶(𝒫 𝐵 ∩ Fin))
1918frnd 6608 . . 3 ((𝐴𝑉𝐵𝐴) → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑥𝐵)) ⊆ (𝒫 𝐵 ∩ Fin))
208, 19eqsstrd 3959 . 2 ((𝐴𝑉𝐵𝐴) → ((𝒫 𝐴 ∩ Fin) ↾t 𝐵) ⊆ (𝒫 𝐵 ∩ Fin))
21 elfpw 9121 . . . . . 6 (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝑥𝐵𝑥 ∈ Fin))
2221simplbi 498 . . . . 5 (𝑥 ∈ (𝒫 𝐵 ∩ Fin) → 𝑥𝐵)
2322adantl 482 . . . 4 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑥𝐵)
24 df-ss 3904 . . . 4 (𝑥𝐵 ↔ (𝑥𝐵) = 𝑥)
2523, 24sylib 217 . . 3 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → (𝑥𝐵) = 𝑥)
264adantr 481 . . . 4 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → (𝒫 𝐴 ∩ Fin) ∈ V)
276adantr 481 . . . 4 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝐵 ∈ V)
28 simplr 766 . . . . . 6 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝐵𝐴)
2923, 28sstrd 3931 . . . . 5 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑥𝐴)
30 elinel2 4130 . . . . . 6 (𝑥 ∈ (𝒫 𝐵 ∩ Fin) → 𝑥 ∈ Fin)
3130adantl 482 . . . . 5 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑥 ∈ Fin)
32 elfpw 9121 . . . . 5 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑥𝐴𝑥 ∈ Fin))
3329, 31, 32sylanbrc 583 . . . 4 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
34 elrestr 17139 . . . 4 (((𝒫 𝐴 ∩ Fin) ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝐵) ∈ ((𝒫 𝐴 ∩ Fin) ↾t 𝐵))
3526, 27, 33, 34syl3anc 1370 . . 3 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → (𝑥𝐵) ∈ ((𝒫 𝐴 ∩ Fin) ↾t 𝐵))
3625, 35eqeltrrd 2840 . 2 (((𝐴𝑉𝐵𝐴) ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ↾t 𝐵))
3720, 36eqelssd 3942 1 ((𝐴𝑉𝐵𝐴) → ((𝒫 𝐴 ∩ Fin) ↾t 𝐵) = (𝒫 𝐵 ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  wss 3887  𝒫 cpw 4533  cmpt 5157  ran crn 5590  (class class class)co 7275  Fincfn 8733  t crest 17131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1o 8297  df-en 8734  df-fin 8737  df-rest 17133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator