| Step | Hyp | Ref
| Expression |
| 1 | | 2nn 12318 |
. . . . . . . . 9
⊢ 2 ∈
ℕ |
| 2 | 1 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 2 ∈
ℕ) |
| 3 | | sadcp1.n |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 4 | 2, 3 | nnexpcld 14268 |
. . . . . . 7
⊢ (𝜑 → (2↑𝑁) ∈ ℕ) |
| 5 | 4 | nnzd 12620 |
. . . . . 6
⊢ (𝜑 → (2↑𝑁) ∈ ℤ) |
| 6 | | iddvds 16294 |
. . . . . 6
⊢
((2↑𝑁) ∈
ℤ → (2↑𝑁)
∥ (2↑𝑁)) |
| 7 | 5, 6 | syl 17 |
. . . . 5
⊢ (𝜑 → (2↑𝑁) ∥ (2↑𝑁)) |
| 8 | | dvds0 16296 |
. . . . . 6
⊢
((2↑𝑁) ∈
ℤ → (2↑𝑁)
∥ 0) |
| 9 | 5, 8 | syl 17 |
. . . . 5
⊢ (𝜑 → (2↑𝑁) ∥ 0) |
| 10 | | breq2 5128 |
. . . . . 6
⊢
((2↑𝑁) =
if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0) → ((2↑𝑁) ∥ (2↑𝑁) ↔ (2↑𝑁) ∥ if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0))) |
| 11 | | breq2 5128 |
. . . . . 6
⊢ (0 =
if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0) → ((2↑𝑁) ∥ 0 ↔ (2↑𝑁) ∥ if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0))) |
| 12 | 10, 11 | ifboth 4545 |
. . . . 5
⊢
(((2↑𝑁) ∥
(2↑𝑁) ∧
(2↑𝑁) ∥ 0)
→ (2↑𝑁) ∥
if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) |
| 13 | 7, 9, 12 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (2↑𝑁) ∥ if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) |
| 14 | | inss1 4217 |
. . . . . . . . 9
⊢ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (𝐴 sadd 𝐵) |
| 15 | | sadval.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆
ℕ0) |
| 16 | | sadval.b |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ⊆
ℕ0) |
| 17 | | sadval.c |
. . . . . . . . . . 11
⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1)))) |
| 18 | 15, 16, 17 | sadfval 16476 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣
hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘))}) |
| 19 | | ssrab2 4060 |
. . . . . . . . . 10
⊢ {𝑘 ∈ ℕ0
∣ hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘))} ⊆
ℕ0 |
| 20 | 18, 19 | eqsstrdi 4008 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 sadd 𝐵) ⊆
ℕ0) |
| 21 | 14, 20 | sstrid 3975 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆
ℕ0) |
| 22 | | fzofi 13997 |
. . . . . . . . . 10
⊢
(0..^𝑁) ∈
Fin |
| 23 | 22 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (0..^𝑁) ∈ Fin) |
| 24 | | inss2 4218 |
. . . . . . . . 9
⊢ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁) |
| 25 | | ssfi 9192 |
. . . . . . . . 9
⊢
(((0..^𝑁) ∈ Fin
∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin) |
| 26 | 23, 24, 25 | sylancl 586 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin) |
| 27 | | elfpw 9371 |
. . . . . . . 8
⊢ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin) ↔ (((𝐴 sadd
𝐵) ∩ (0..^𝑁)) ⊆ ℕ0
∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)) |
| 28 | 21, 26, 27 | sylanbrc 583 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin)) |
| 29 | | bitsf1o 16469 |
. . . . . . . . . 10
⊢ (bits
↾ ℕ0):ℕ0–1-1-onto→(𝒫 ℕ0 ∩
Fin) |
| 30 | | f1ocnv 6835 |
. . . . . . . . . 10
⊢ ((bits
↾ ℕ0):ℕ0–1-1-onto→(𝒫 ℕ0 ∩ Fin)
→ ◡(bits ↾
ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0) |
| 31 | | f1of 6823 |
. . . . . . . . . 10
⊢ (◡(bits ↾
ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0 → ◡(bits ↾
ℕ0):(𝒫 ℕ0 ∩
Fin)⟶ℕ0) |
| 32 | 29, 30, 31 | mp2b 10 |
. . . . . . . . 9
⊢ ◡(bits ↾
ℕ0):(𝒫 ℕ0 ∩
Fin)⟶ℕ0 |
| 33 | | sadcadd.k |
. . . . . . . . . 10
⊢ 𝐾 = ◡(bits ↾
ℕ0) |
| 34 | 33 | feq1i 6702 |
. . . . . . . . 9
⊢ (𝐾:(𝒫 ℕ0
∩ Fin)⟶ℕ0 ↔ ◡(bits ↾
ℕ0):(𝒫 ℕ0 ∩
Fin)⟶ℕ0) |
| 35 | 32, 34 | mpbir 231 |
. . . . . . . 8
⊢ 𝐾:(𝒫 ℕ0
∩ Fin)⟶ℕ0 |
| 36 | 35 | ffvelcdmi 7078 |
. . . . . . 7
⊢ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin) → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈
ℕ0) |
| 37 | 28, 36 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈
ℕ0) |
| 38 | 37 | nn0cnd 12569 |
. . . . 5
⊢ (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℂ) |
| 39 | 4 | nncnd 12261 |
. . . . . 6
⊢ (𝜑 → (2↑𝑁) ∈ ℂ) |
| 40 | | 0cn 11232 |
. . . . . 6
⊢ 0 ∈
ℂ |
| 41 | | ifcl 4551 |
. . . . . 6
⊢
(((2↑𝑁) ∈
ℂ ∧ 0 ∈ ℂ) → if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0) ∈ ℂ) |
| 42 | 39, 40, 41 | sylancl 586 |
. . . . 5
⊢ (𝜑 → if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0) ∈ ℂ) |
| 43 | 38, 42 | pncan2d 11601 |
. . . 4
⊢ (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) − (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) |
| 44 | 13, 43 | breqtrrd 5152 |
. . 3
⊢ (𝜑 → (2↑𝑁) ∥ (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) − (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))))) |
| 45 | 37 | nn0zd 12619 |
. . . . 5
⊢ (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℤ) |
| 46 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ∅ ∈ (𝐶‘𝑁)) → (2↑𝑁) ∈ ℤ) |
| 47 | | 0zd 12605 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ ∅ ∈ (𝐶‘𝑁)) → 0 ∈ ℤ) |
| 48 | 46, 47 | ifclda 4541 |
. . . . 5
⊢ (𝜑 → if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0) ∈ ℤ) |
| 49 | 45, 48 | zaddcld 12706 |
. . . 4
⊢ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) ∈ ℤ) |
| 50 | | moddvds 16288 |
. . . 4
⊢
(((2↑𝑁) ∈
ℕ ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) ∈ ℤ ∧ (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℤ) → ((((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) mod (2↑𝑁)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) ↔ (2↑𝑁) ∥ (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) − (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))))) |
| 51 | 4, 49, 45, 50 | syl3anc 1373 |
. . 3
⊢ (𝜑 → ((((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) mod (2↑𝑁)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) ↔ (2↑𝑁) ∥ (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) − (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))))) |
| 52 | 44, 51 | mpbird 257 |
. 2
⊢ (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) mod (2↑𝑁)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁))) |
| 53 | 15, 16, 17, 3, 33 | sadadd2 16484 |
. . 3
⊢ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))) |
| 54 | 53 | oveq1d 7425 |
. 2
⊢ (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) mod (2↑𝑁)) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁))) |
| 55 | 52, 54 | eqtr3d 2773 |
1
⊢ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁))) |