MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd3 Structured version   Visualization version   GIF version

Theorem sadadd3 16507
Description: Sum of initial segments of the sadd sequence. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadcp1.n (𝜑𝑁 ∈ ℕ0)
sadcadd.k 𝐾 = (bits ↾ ℕ0)
Assertion
Ref Expression
sadadd3 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁)))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝐾(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadadd3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2nn 12366 . . . . . . . . 9 2 ∈ ℕ
21a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℕ)
3 sadcp1.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
42, 3nnexpcld 14294 . . . . . . 7 (𝜑 → (2↑𝑁) ∈ ℕ)
54nnzd 12666 . . . . . 6 (𝜑 → (2↑𝑁) ∈ ℤ)
6 iddvds 16318 . . . . . 6 ((2↑𝑁) ∈ ℤ → (2↑𝑁) ∥ (2↑𝑁))
75, 6syl 17 . . . . 5 (𝜑 → (2↑𝑁) ∥ (2↑𝑁))
8 dvds0 16320 . . . . . 6 ((2↑𝑁) ∈ ℤ → (2↑𝑁) ∥ 0)
95, 8syl 17 . . . . 5 (𝜑 → (2↑𝑁) ∥ 0)
10 breq2 5170 . . . . . 6 ((2↑𝑁) = if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0) → ((2↑𝑁) ∥ (2↑𝑁) ↔ (2↑𝑁) ∥ if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
11 breq2 5170 . . . . . 6 (0 = if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0) → ((2↑𝑁) ∥ 0 ↔ (2↑𝑁) ∥ if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
1210, 11ifboth 4587 . . . . 5 (((2↑𝑁) ∥ (2↑𝑁) ∧ (2↑𝑁) ∥ 0) → (2↑𝑁) ∥ if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0))
137, 9, 12syl2anc 583 . . . 4 (𝜑 → (2↑𝑁) ∥ if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0))
14 inss1 4258 . . . . . . . . 9 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (𝐴 sadd 𝐵)
15 sadval.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℕ0)
16 sadval.b . . . . . . . . . . 11 (𝜑𝐵 ⊆ ℕ0)
17 sadval.c . . . . . . . . . . 11 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
1815, 16, 17sadfval 16498 . . . . . . . . . 10 (𝜑 → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))})
19 ssrab2 4103 . . . . . . . . . 10 {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))} ⊆ ℕ0
2018, 19eqsstrdi 4063 . . . . . . . . 9 (𝜑 → (𝐴 sadd 𝐵) ⊆ ℕ0)
2114, 20sstrid 4020 . . . . . . . 8 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0)
22 fzofi 14025 . . . . . . . . . 10 (0..^𝑁) ∈ Fin
2322a1i 11 . . . . . . . . 9 (𝜑 → (0..^𝑁) ∈ Fin)
24 inss2 4259 . . . . . . . . 9 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
25 ssfi 9240 . . . . . . . . 9 (((0..^𝑁) ∈ Fin ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
2623, 24, 25sylancl 585 . . . . . . . 8 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
27 elfpw 9424 . . . . . . . 8 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin))
2821, 26, 27sylanbrc 582 . . . . . . 7 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
29 bitsf1o 16491 . . . . . . . . . 10 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
30 f1ocnv 6874 . . . . . . . . . 10 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
31 f1of 6862 . . . . . . . . . 10 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
3229, 30, 31mp2b 10 . . . . . . . . 9 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0
33 sadcadd.k . . . . . . . . . 10 𝐾 = (bits ↾ ℕ0)
3433feq1i 6738 . . . . . . . . 9 (𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
3532, 34mpbir 231 . . . . . . . 8 𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0
3635ffvelcdmi 7117 . . . . . . 7 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
3728, 36syl 17 . . . . . 6 (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
3837nn0cnd 12615 . . . . 5 (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℂ)
394nncnd 12309 . . . . . 6 (𝜑 → (2↑𝑁) ∈ ℂ)
40 0cn 11282 . . . . . 6 0 ∈ ℂ
41 ifcl 4593 . . . . . 6 (((2↑𝑁) ∈ ℂ ∧ 0 ∈ ℂ) → if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0) ∈ ℂ)
4239, 40, 41sylancl 585 . . . . 5 (𝜑 → if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0) ∈ ℂ)
4338, 42pncan2d 11649 . . . 4 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) − (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0))
4413, 43breqtrrd 5194 . . 3 (𝜑 → (2↑𝑁) ∥ (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) − (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))))
4537nn0zd 12665 . . . . 5 (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℤ)
465adantr 480 . . . . . 6 ((𝜑 ∧ ∅ ∈ (𝐶𝑁)) → (2↑𝑁) ∈ ℤ)
47 0zd 12651 . . . . . 6 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → 0 ∈ ℤ)
4846, 47ifclda 4583 . . . . 5 (𝜑 → if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0) ∈ ℤ)
4945, 48zaddcld 12751 . . . 4 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) ∈ ℤ)
50 moddvds 16313 . . . 4 (((2↑𝑁) ∈ ℕ ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) ∈ ℤ ∧ (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℤ) → ((((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) mod (2↑𝑁)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) ↔ (2↑𝑁) ∥ (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) − (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))))))
514, 49, 45, 50syl3anc 1371 . . 3 (𝜑 → ((((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) mod (2↑𝑁)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) ↔ (2↑𝑁) ∥ (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) − (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))))))
5244, 51mpbird 257 . 2 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) mod (2↑𝑁)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)))
5315, 16, 17, 3, 33sadadd2 16506 . . 3 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
5453oveq1d 7463 . 2 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) mod (2↑𝑁)) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁)))
5552, 54eqtr3d 2782 1 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  haddwhad 1590  caddwcad 1603  wcel 2108  {crab 3443  cin 3975  wss 3976  c0 4352  ifcif 4548  𝒫 cpw 4622   class class class wbr 5166  cmpt 5249  ccnv 5699  cres 5702  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cmpo 7450  1oc1o 8515  2oc2o 8516  Fincfn 9003  cc 11182  0cc0 11184  1c1 11185   + caddc 11187  cmin 11520  cn 12293  2c2 12348  0cn0 12553  cz 12639  ..^cfzo 13711   mod cmo 13920  seqcseq 14052  cexp 14112  cdvds 16302  bitscbits 16465   sadd csad 16466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-xor 1509  df-tru 1540  df-fal 1550  df-had 1591  df-cad 1604  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-dvds 16303  df-bits 16468  df-sad 16497
This theorem is referenced by:  sadaddlem  16512  sadasslem  16516  sadeq  16518
  Copyright terms: Public domain W3C validator