MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadaddlem Structured version   Visualization version   GIF version

Theorem sadaddlem 16377
Description: Lemma for sadadd 16378. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadaddlem.c 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (bits‘𝐴), 𝑚 ∈ (bits‘𝐵), ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadaddlem.k 𝐾 = (bits ↾ ℕ0)
sadaddlem.1 (𝜑𝐴 ∈ ℤ)
sadaddlem.2 (𝜑𝐵 ∈ ℤ)
sadaddlem.3 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
sadaddlem (𝜑 → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) = (bits‘((𝐴 + 𝐵) mod (2↑𝑁))))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝐾(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadaddlem
StepHypRef Expression
1 2nn 12198 . . . . . . . . . 10 2 ∈ ℕ
21a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℕ)
3 sadaddlem.3 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
42, 3nnexpcld 14152 . . . . . . . 8 (𝜑 → (2↑𝑁) ∈ ℕ)
54nnzd 12495 . . . . . . 7 (𝜑 → (2↑𝑁) ∈ ℤ)
6 sadaddlem.1 . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
7 inss1 4184 . . . . . . . . . . . 12 ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ (bits‘𝐴)
8 bitsss 16337 . . . . . . . . . . . 12 (bits‘𝐴) ⊆ ℕ0
97, 8sstri 3939 . . . . . . . . . . 11 ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ ℕ0
10 fzofi 13881 . . . . . . . . . . . 12 (0..^𝑁) ∈ Fin
11 inss2 4185 . . . . . . . . . . . 12 ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
12 ssfi 9082 . . . . . . . . . . . 12 (((0..^𝑁) ∈ Fin ∧ ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((bits‘𝐴) ∩ (0..^𝑁)) ∈ Fin)
1310, 11, 12mp2an 692 . . . . . . . . . . 11 ((bits‘𝐴) ∩ (0..^𝑁)) ∈ Fin
14 elfpw 9238 . . . . . . . . . . 11 (((bits‘𝐴) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((bits‘𝐴) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((bits‘𝐴) ∩ (0..^𝑁)) ∈ Fin))
159, 13, 14mpbir2an 711 . . . . . . . . . 10 ((bits‘𝐴) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)
16 bitsf1o 16356 . . . . . . . . . . . . 13 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
17 f1ocnv 6775 . . . . . . . . . . . . 13 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
18 f1of 6763 . . . . . . . . . . . . 13 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
1916, 17, 18mp2b 10 . . . . . . . . . . . 12 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0
20 sadaddlem.k . . . . . . . . . . . . 13 𝐾 = (bits ↾ ℕ0)
2120feq1i 6642 . . . . . . . . . . . 12 (𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
2219, 21mpbir 231 . . . . . . . . . . 11 𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0
2322ffvelcdmi 7016 . . . . . . . . . 10 (((bits‘𝐴) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) ∈ ℕ0)
2415, 23mp1i 13 . . . . . . . . 9 (𝜑 → (𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) ∈ ℕ0)
2524nn0zd 12494 . . . . . . . 8 (𝜑 → (𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) ∈ ℤ)
266, 25zsubcld 12582 . . . . . . 7 (𝜑 → (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ∈ ℤ)
27 sadaddlem.2 . . . . . . . 8 (𝜑𝐵 ∈ ℤ)
28 inss1 4184 . . . . . . . . . . . 12 ((bits‘𝐵) ∩ (0..^𝑁)) ⊆ (bits‘𝐵)
29 bitsss 16337 . . . . . . . . . . . 12 (bits‘𝐵) ⊆ ℕ0
3028, 29sstri 3939 . . . . . . . . . . 11 ((bits‘𝐵) ∩ (0..^𝑁)) ⊆ ℕ0
31 inss2 4185 . . . . . . . . . . . 12 ((bits‘𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
32 ssfi 9082 . . . . . . . . . . . 12 (((0..^𝑁) ∈ Fin ∧ ((bits‘𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((bits‘𝐵) ∩ (0..^𝑁)) ∈ Fin)
3310, 31, 32mp2an 692 . . . . . . . . . . 11 ((bits‘𝐵) ∩ (0..^𝑁)) ∈ Fin
34 elfpw 9238 . . . . . . . . . . 11 (((bits‘𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((bits‘𝐵) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((bits‘𝐵) ∩ (0..^𝑁)) ∈ Fin))
3530, 33, 34mpbir2an 711 . . . . . . . . . 10 ((bits‘𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)
3622ffvelcdmi 7016 . . . . . . . . . 10 (((bits‘𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
3735, 36mp1i 13 . . . . . . . . 9 (𝜑 → (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
3837nn0zd 12494 . . . . . . . 8 (𝜑 → (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))) ∈ ℤ)
3927, 38zsubcld 12582 . . . . . . 7 (𝜑 → (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ∈ ℤ)
4020fveq1i 6823 . . . . . . . . . . . 12 (𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘((bits‘𝐴) ∩ (0..^𝑁)))
416, 4zmodcld 13796 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 mod (2↑𝑁)) ∈ ℕ0)
4241fvresd 6842 . . . . . . . . . . . . . 14 (𝜑 → ((bits ↾ ℕ0)‘(𝐴 mod (2↑𝑁))) = (bits‘(𝐴 mod (2↑𝑁))))
43 bitsmod 16347 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)))
446, 3, 43syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (bits‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)))
4542, 44eqtrd 2766 . . . . . . . . . . . . 13 (𝜑 → ((bits ↾ ℕ0)‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)))
46 f1ocnvfv 7212 . . . . . . . . . . . . . 14 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (𝐴 mod (2↑𝑁)) ∈ ℕ0) → (((bits ↾ ℕ0)‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)) → ((bits ↾ ℕ0)‘((bits‘𝐴) ∩ (0..^𝑁))) = (𝐴 mod (2↑𝑁))))
4716, 41, 46sylancr 587 . . . . . . . . . . . . 13 (𝜑 → (((bits ↾ ℕ0)‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)) → ((bits ↾ ℕ0)‘((bits‘𝐴) ∩ (0..^𝑁))) = (𝐴 mod (2↑𝑁))))
4845, 47mpd 15 . . . . . . . . . . . 12 (𝜑 → ((bits ↾ ℕ0)‘((bits‘𝐴) ∩ (0..^𝑁))) = (𝐴 mod (2↑𝑁)))
4940, 48eqtrid 2778 . . . . . . . . . . 11 (𝜑 → (𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) = (𝐴 mod (2↑𝑁)))
5049oveq2d 7362 . . . . . . . . . 10 (𝜑 → (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) = (𝐴 − (𝐴 mod (2↑𝑁))))
5150oveq1d 7361 . . . . . . . . 9 (𝜑 → ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) / (2↑𝑁)) = ((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)))
526zred 12577 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
534nnrpd 12932 . . . . . . . . . 10 (𝜑 → (2↑𝑁) ∈ ℝ+)
54 moddifz 13787 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → ((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) ∈ ℤ)
5552, 53, 54syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) ∈ ℤ)
5651, 55eqeltrd 2831 . . . . . . . 8 (𝜑 → ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) / (2↑𝑁)) ∈ ℤ)
574nnne0d 12175 . . . . . . . . 9 (𝜑 → (2↑𝑁) ≠ 0)
58 dvdsval2 16166 . . . . . . . . 9 (((2↑𝑁) ∈ ℤ ∧ (2↑𝑁) ≠ 0 ∧ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ∈ ℤ) → ((2↑𝑁) ∥ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ↔ ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) / (2↑𝑁)) ∈ ℤ))
595, 57, 26, 58syl3anc 1373 . . . . . . . 8 (𝜑 → ((2↑𝑁) ∥ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ↔ ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) / (2↑𝑁)) ∈ ℤ))
6056, 59mpbird 257 . . . . . . 7 (𝜑 → (2↑𝑁) ∥ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))))
6120fveq1i 6823 . . . . . . . . . . . 12 (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘((bits‘𝐵) ∩ (0..^𝑁)))
6227, 4zmodcld 13796 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 mod (2↑𝑁)) ∈ ℕ0)
6362fvresd 6842 . . . . . . . . . . . . . 14 (𝜑 → ((bits ↾ ℕ0)‘(𝐵 mod (2↑𝑁))) = (bits‘(𝐵 mod (2↑𝑁))))
64 bitsmod 16347 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(𝐵 mod (2↑𝑁))) = ((bits‘𝐵) ∩ (0..^𝑁)))
6527, 3, 64syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (bits‘(𝐵 mod (2↑𝑁))) = ((bits‘𝐵) ∩ (0..^𝑁)))
6663, 65eqtrd 2766 . . . . . . . . . . . . 13 (𝜑 → ((bits ↾ ℕ0)‘(𝐵 mod (2↑𝑁))) = ((bits‘𝐵) ∩ (0..^𝑁)))
67 f1ocnvfv 7212 . . . . . . . . . . . . . 14 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (𝐵 mod (2↑𝑁)) ∈ ℕ0) → (((bits ↾ ℕ0)‘(𝐵 mod (2↑𝑁))) = ((bits‘𝐵) ∩ (0..^𝑁)) → ((bits ↾ ℕ0)‘((bits‘𝐵) ∩ (0..^𝑁))) = (𝐵 mod (2↑𝑁))))
6816, 62, 67sylancr 587 . . . . . . . . . . . . 13 (𝜑 → (((bits ↾ ℕ0)‘(𝐵 mod (2↑𝑁))) = ((bits‘𝐵) ∩ (0..^𝑁)) → ((bits ↾ ℕ0)‘((bits‘𝐵) ∩ (0..^𝑁))) = (𝐵 mod (2↑𝑁))))
6966, 68mpd 15 . . . . . . . . . . . 12 (𝜑 → ((bits ↾ ℕ0)‘((bits‘𝐵) ∩ (0..^𝑁))) = (𝐵 mod (2↑𝑁)))
7061, 69eqtrid 2778 . . . . . . . . . . 11 (𝜑 → (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))) = (𝐵 mod (2↑𝑁)))
7170oveq2d 7362 . . . . . . . . . 10 (𝜑 → (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) = (𝐵 − (𝐵 mod (2↑𝑁))))
7271oveq1d 7361 . . . . . . . . 9 (𝜑 → ((𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) / (2↑𝑁)) = ((𝐵 − (𝐵 mod (2↑𝑁))) / (2↑𝑁)))
7327zred 12577 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
74 moddifz 13787 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → ((𝐵 − (𝐵 mod (2↑𝑁))) / (2↑𝑁)) ∈ ℤ)
7573, 53, 74syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐵 − (𝐵 mod (2↑𝑁))) / (2↑𝑁)) ∈ ℤ)
7672, 75eqeltrd 2831 . . . . . . . 8 (𝜑 → ((𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) / (2↑𝑁)) ∈ ℤ)
77 dvdsval2 16166 . . . . . . . . 9 (((2↑𝑁) ∈ ℤ ∧ (2↑𝑁) ≠ 0 ∧ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ∈ ℤ) → ((2↑𝑁) ∥ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ↔ ((𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) / (2↑𝑁)) ∈ ℤ))
785, 57, 39, 77syl3anc 1373 . . . . . . . 8 (𝜑 → ((2↑𝑁) ∥ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ↔ ((𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) / (2↑𝑁)) ∈ ℤ))
7976, 78mpbird 257 . . . . . . 7 (𝜑 → (2↑𝑁) ∥ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))))
805, 26, 39, 60, 79dvds2addd 16203 . . . . . 6 (𝜑 → (2↑𝑁) ∥ ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) + (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))))))
816zcnd 12578 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
8227zcnd 12578 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
8324nn0cnd 12444 . . . . . . 7 (𝜑 → (𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) ∈ ℂ)
8437nn0cnd 12444 . . . . . . 7 (𝜑 → (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))) ∈ ℂ)
8581, 82, 83, 84addsub4d 11519 . . . . . 6 (𝜑 → ((𝐴 + 𝐵) − ((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))))) = ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) + (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))))))
8680, 85breqtrrd 5117 . . . . 5 (𝜑 → (2↑𝑁) ∥ ((𝐴 + 𝐵) − ((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))))))
876, 27zaddcld 12581 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ∈ ℤ)
8825, 38zaddcld 12581 . . . . . 6 (𝜑 → ((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ∈ ℤ)
89 moddvds 16174 . . . . . 6 (((2↑𝑁) ∈ ℕ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ ((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ∈ ℤ) → (((𝐴 + 𝐵) mod (2↑𝑁)) = (((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) mod (2↑𝑁)) ↔ (2↑𝑁) ∥ ((𝐴 + 𝐵) − ((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))))))
904, 87, 88, 89syl3anc 1373 . . . . 5 (𝜑 → (((𝐴 + 𝐵) mod (2↑𝑁)) = (((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) mod (2↑𝑁)) ↔ (2↑𝑁) ∥ ((𝐴 + 𝐵) − ((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))))))
9186, 90mpbird 257 . . . 4 (𝜑 → ((𝐴 + 𝐵) mod (2↑𝑁)) = (((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) mod (2↑𝑁)))
928a1i 11 . . . . 5 (𝜑 → (bits‘𝐴) ⊆ ℕ0)
9329a1i 11 . . . . 5 (𝜑 → (bits‘𝐵) ⊆ ℕ0)
94 sadaddlem.c . . . . 5 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (bits‘𝐴), 𝑚 ∈ (bits‘𝐵), ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
9592, 93, 94, 3, 20sadadd3 16372 . . . 4 (𝜑 → ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) mod (2↑𝑁)) = (((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) mod (2↑𝑁)))
96 inss1 4184 . . . . . . . . 9 (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ⊆ ((bits‘𝐴) sadd (bits‘𝐵))
97 sadcl 16373 . . . . . . . . . 10 (((bits‘𝐴) ⊆ ℕ0 ∧ (bits‘𝐵) ⊆ ℕ0) → ((bits‘𝐴) sadd (bits‘𝐵)) ⊆ ℕ0)
988, 29, 97mp2an 692 . . . . . . . . 9 ((bits‘𝐴) sadd (bits‘𝐵)) ⊆ ℕ0
9996, 98sstri 3939 . . . . . . . 8 (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ⊆ ℕ0
100 inss2 4185 . . . . . . . . 9 (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
101 ssfi 9082 . . . . . . . . 9 (((0..^𝑁) ∈ Fin ∧ (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ Fin)
10210, 100, 101mp2an 692 . . . . . . . 8 (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ Fin
103 elfpw 9238 . . . . . . . 8 ((((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ Fin))
10499, 102, 103mpbir2an 711 . . . . . . 7 (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)
10522ffvelcdmi 7016 . . . . . . 7 ((((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℕ0)
106104, 105mp1i 13 . . . . . 6 (𝜑 → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℕ0)
107106nn0red 12443 . . . . 5 (𝜑 → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℝ)
108106nn0ge0d 12445 . . . . 5 (𝜑 → 0 ≤ (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))))
10920fveq1i 6823 . . . . . . . . . 10 (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))
110109fveq2i 6825 . . . . . . . . 9 ((bits ↾ ℕ0)‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) = ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))))
111106fvresd 6842 . . . . . . . . 9 (𝜑 → ((bits ↾ ℕ0)‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) = (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))))
112104a1i 11 . . . . . . . . . 10 (𝜑 → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
113 f1ocnvfv2 7211 . . . . . . . . . 10 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) = (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))
11416, 112, 113sylancr 587 . . . . . . . . 9 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) = (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))
115110, 111, 1143eqtr3a 2790 . . . . . . . 8 (𝜑 → (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) = (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))
116115, 100eqsstrdi 3974 . . . . . . 7 (𝜑 → (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) ⊆ (0..^𝑁))
117106nn0zd 12494 . . . . . . . 8 (𝜑 → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℤ)
118 bitsfzo 16346 . . . . . . . 8 (((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
119117, 3, 118syl2anc 584 . . . . . . 7 (𝜑 → ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
120116, 119mpbird 257 . . . . . 6 (𝜑 → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)))
121 elfzolt2 13568 . . . . . 6 ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) < (2↑𝑁))
122120, 121syl 17 . . . . 5 (𝜑 → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) < (2↑𝑁))
123 modid 13800 . . . . 5 ((((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) ∧ (0 ≤ (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∧ (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) < (2↑𝑁))) → ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) mod (2↑𝑁)) = (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))))
124107, 53, 108, 122, 123syl22anc 838 . . . 4 (𝜑 → ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) mod (2↑𝑁)) = (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))))
12591, 95, 1243eqtr2d 2772 . . 3 (𝜑 → ((𝐴 + 𝐵) mod (2↑𝑁)) = (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))))
126125fveq2d 6826 . 2 (𝜑 → (bits‘((𝐴 + 𝐵) mod (2↑𝑁))) = (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))))
127126, 115eqtr2d 2767 1 (𝜑 → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) = (bits‘((𝐴 + 𝐵) mod (2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  caddwcad 1607  wcel 2111  wne 2928  cin 3896  wss 3897  c0 4280  ifcif 4472  𝒫 cpw 4547   class class class wbr 5089  cmpt 5170  ccnv 5613  cres 5616  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cmpo 7348  1oc1o 8378  2oc2o 8379  Fincfn 8869  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  2c2 12180  0cn0 12381  cz 12468  +crp 12890  ..^cfzo 13554   mod cmo 13773  seqcseq 13908  cexp 13968  cdvds 16163  bitscbits 16330   sadd csad 16331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-had 1595  df-cad 1608  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-dvds 16164  df-bits 16333  df-sad 16362
This theorem is referenced by:  sadadd  16378
  Copyright terms: Public domain W3C validator