MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd2lem Structured version   Visualization version   GIF version

Theorem sadadd2lem 16370
Description: Lemma for sadadd2 16371. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadcp1.n (𝜑𝑁 ∈ ℕ0)
sadcadd.k 𝐾 = (bits ↾ ℕ0)
sadadd2lem.1 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
Assertion
Ref Expression
sadadd2lem (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1))))))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝐾(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadadd2lem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 inss1 4188 . . . . . . . . 9 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (𝐴 sadd 𝐵)
2 sadval.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℕ0)
3 sadval.b . . . . . . . . . . 11 (𝜑𝐵 ⊆ ℕ0)
4 sadval.c . . . . . . . . . . 11 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
52, 3, 4sadfval 16363 . . . . . . . . . 10 (𝜑 → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))})
6 ssrab2 4031 . . . . . . . . . 10 {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))} ⊆ ℕ0
75, 6eqsstrdi 3980 . . . . . . . . 9 (𝜑 → (𝐴 sadd 𝐵) ⊆ ℕ0)
81, 7sstrid 3947 . . . . . . . 8 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0)
9 fzofi 13881 . . . . . . . . . 10 (0..^𝑁) ∈ Fin
109a1i 11 . . . . . . . . 9 (𝜑 → (0..^𝑁) ∈ Fin)
11 inss2 4189 . . . . . . . . 9 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
12 ssfi 9087 . . . . . . . . 9 (((0..^𝑁) ∈ Fin ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
1310, 11, 12sylancl 586 . . . . . . . 8 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
14 elfpw 9244 . . . . . . . 8 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin))
158, 13, 14sylanbrc 583 . . . . . . 7 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
16 bitsf1o 16356 . . . . . . . . . 10 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
17 f1ocnv 6776 . . . . . . . . . 10 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
18 f1of 6764 . . . . . . . . . 10 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
1916, 17, 18mp2b 10 . . . . . . . . 9 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0
20 sadcadd.k . . . . . . . . . 10 𝐾 = (bits ↾ ℕ0)
2120feq1i 6643 . . . . . . . . 9 (𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
2219, 21mpbir 231 . . . . . . . 8 𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0
2322ffvelcdmi 7017 . . . . . . 7 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
2415, 23syl 17 . . . . . 6 (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
2524nn0cnd 12447 . . . . 5 (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℂ)
26 2nn0 12401 . . . . . . . . . 10 2 ∈ ℕ0
2726a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℕ0)
28 sadcp1.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
2927, 28nn0expcld 14153 . . . . . . . 8 (𝜑 → (2↑𝑁) ∈ ℕ0)
30 0nn0 12399 . . . . . . . 8 0 ∈ ℕ0
31 ifcl 4522 . . . . . . . 8 (((2↑𝑁) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) ∈ ℕ0)
3229, 30, 31sylancl 586 . . . . . . 7 (𝜑 → if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) ∈ ℕ0)
3332nn0cnd 12447 . . . . . 6 (𝜑 → if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) ∈ ℂ)
34 1nn0 12400 . . . . . . . . . . 11 1 ∈ ℕ0
3534a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ ℕ0)
3628, 35nn0addcld 12449 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℕ0)
3727, 36nn0expcld 14153 . . . . . . . 8 (𝜑 → (2↑(𝑁 + 1)) ∈ ℕ0)
38 ifcl 4522 . . . . . . . 8 (((2↑(𝑁 + 1)) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0) ∈ ℕ0)
3937, 30, 38sylancl 586 . . . . . . 7 (𝜑 → if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0) ∈ ℕ0)
4039nn0cnd 12447 . . . . . 6 (𝜑 → if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0) ∈ ℂ)
4133, 40addcld 11134 . . . . 5 (𝜑 → (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) ∈ ℂ)
4225, 41addcld 11134 . . . 4 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) ∈ ℂ)
43 inss1 4188 . . . . . . . . . 10 (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴
4443, 2sstrid 3947 . . . . . . . . 9 (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
45 inss2 4189 . . . . . . . . . 10 (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
46 ssfi 9087 . . . . . . . . . 10 (((0..^𝑁) ∈ Fin ∧ (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
4710, 45, 46sylancl 586 . . . . . . . . 9 (𝜑 → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
48 elfpw 9244 . . . . . . . . 9 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐴 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐴 ∩ (0..^𝑁)) ∈ Fin))
4944, 47, 48sylanbrc 583 . . . . . . . 8 (𝜑 → (𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
5022ffvelcdmi 7017 . . . . . . . 8 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℕ0)
5149, 50syl 17 . . . . . . 7 (𝜑 → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℕ0)
5251nn0cnd 12447 . . . . . 6 (𝜑 → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℂ)
53 inss1 4188 . . . . . . . . . 10 (𝐵 ∩ (0..^𝑁)) ⊆ 𝐵
5453, 3sstrid 3947 . . . . . . . . 9 (𝜑 → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
55 inss2 4189 . . . . . . . . . 10 (𝐵 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
56 ssfi 9087 . . . . . . . . . 10 (((0..^𝑁) ∈ Fin ∧ (𝐵 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐵 ∩ (0..^𝑁)) ∈ Fin)
5710, 55, 56sylancl 586 . . . . . . . . 9 (𝜑 → (𝐵 ∩ (0..^𝑁)) ∈ Fin)
58 elfpw 9244 . . . . . . . . 9 ((𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐵 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐵 ∩ (0..^𝑁)) ∈ Fin))
5954, 57, 58sylanbrc 583 . . . . . . . 8 (𝜑 → (𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
6022ffvelcdmi 7017 . . . . . . . 8 ((𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℕ0)
6159, 60syl 17 . . . . . . 7 (𝜑 → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℕ0)
6261nn0cnd 12447 . . . . . 6 (𝜑 → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℂ)
6352, 62addcld 11134 . . . . 5 (𝜑 → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) ∈ ℂ)
64 ifcl 4522 . . . . . . . 8 (((2↑𝑁) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑁𝐴, (2↑𝑁), 0) ∈ ℕ0)
6529, 30, 64sylancl 586 . . . . . . 7 (𝜑 → if(𝑁𝐴, (2↑𝑁), 0) ∈ ℕ0)
6665nn0cnd 12447 . . . . . 6 (𝜑 → if(𝑁𝐴, (2↑𝑁), 0) ∈ ℂ)
67 ifcl 4522 . . . . . . . 8 (((2↑𝑁) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑁𝐵, (2↑𝑁), 0) ∈ ℕ0)
6829, 30, 67sylancl 586 . . . . . . 7 (𝜑 → if(𝑁𝐵, (2↑𝑁), 0) ∈ ℕ0)
6968nn0cnd 12447 . . . . . 6 (𝜑 → if(𝑁𝐵, (2↑𝑁), 0) ∈ ℂ)
7066, 69addcld 11134 . . . . 5 (𝜑 → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ∈ ℂ)
7163, 70addcld 11134 . . . 4 (𝜑 → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) ∈ ℂ)
7229nn0cnd 12447 . . . . . 6 (𝜑 → (2↑𝑁) ∈ ℂ)
7372adantr 480 . . . . 5 ((𝜑 ∧ ∅ ∈ (𝐶𝑁)) → (2↑𝑁) ∈ ℂ)
74 0cnd 11108 . . . . 5 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → 0 ∈ ℂ)
7573, 74ifclda 4512 . . . 4 (𝜑 → if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0) ∈ ℂ)
76 sadadd2lem.1 . . . . . 6 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
772, 3, 4, 28sadval 16367 . . . . . . . . 9 (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
7877ifbid 4500 . . . . . . . 8 (𝜑 → if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) = if(hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2↑𝑁), 0))
792, 3, 4, 28sadcp1 16366 . . . . . . . . 9 (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
8027nn0cnd 12447 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℂ)
8180, 28expp1d 14054 . . . . . . . . . 10 (𝜑 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
8272, 80mulcomd 11136 . . . . . . . . . 10 (𝜑 → ((2↑𝑁) · 2) = (2 · (2↑𝑁)))
8381, 82eqtrd 2764 . . . . . . . . 9 (𝜑 → (2↑(𝑁 + 1)) = (2 · (2↑𝑁)))
8479, 83ifbieq1d 4501 . . . . . . . 8 (𝜑 → if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0) = if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2 · (2↑𝑁)), 0))
8578, 84oveq12d 7367 . . . . . . 7 (𝜑 → (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = (if(hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2↑𝑁), 0) + if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2 · (2↑𝑁)), 0)))
86 sadadd2lem2 16361 . . . . . . . 8 ((2↑𝑁) ∈ ℂ → (if(hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2↑𝑁), 0) + if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2 · (2↑𝑁)), 0)) = ((if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
8772, 86syl 17 . . . . . . 7 (𝜑 → (if(hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2↑𝑁), 0) + if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2 · (2↑𝑁)), 0)) = ((if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
8885, 87eqtrd 2764 . . . . . 6 (𝜑 → (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = ((if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
8976, 88oveq12d 7367 . . . . 5 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + ((if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0))))
9025, 41, 75add32d 11344 . . . . 5 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))))
9163, 70, 75addassd 11137 . . . . 5 (𝜑 → ((((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + ((if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0))))
9289, 90, 913eqtr4d 2774 . . . 4 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
9342, 71, 75, 92addcan2ad 11322 . . 3 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))))
9425, 33, 40addassd 11137 . . 3 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0)) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))))
9552, 66, 62, 69add4d 11345 . . 3 (𝜑 → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)) + ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))))
9693, 94, 953eqtr4d 2774 . 2 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0)) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)) + ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0))))
9720bitsinvp1 16360 . . . 4 (((𝐴 sadd 𝐵) ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0)))
987, 28, 97syl2anc 584 . . 3 (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0)))
9998oveq1d 7364 . 2 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0)) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)))
10020bitsinvp1 16360 . . . 4 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)))
1012, 28, 100syl2anc 584 . . 3 (𝜑 → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)))
10220bitsinvp1 16360 . . . 4 ((𝐵 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0)))
1033, 28, 102syl2anc 584 . . 3 (𝜑 → (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0)))
104101, 103oveq12d 7367 . 2 (𝜑 → ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1))))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)) + ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0))))
10596, 99, 1043eqtr4d 2774 1 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  haddwhad 1593  caddwcad 1606  wcel 2109  {crab 3394  cin 3902  wss 3903  c0 4284  ifcif 4476  𝒫 cpw 4551  cmpt 5173  ccnv 5618  cres 5621  wf 6478  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  cmpo 7351  1oc1o 8381  2oc2o 8382  Fincfn 8872  cc 11007  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  cmin 11347  2c2 12183  0cn0 12384  ..^cfzo 13557  seqcseq 13908  cexp 13968  bitscbits 16330   sadd csad 16331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-had 1594  df-cad 1607  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-dvds 16164  df-bits 16333  df-sad 16362
This theorem is referenced by:  sadadd2  16371
  Copyright terms: Public domain W3C validator