Step | Hyp | Ref
| Expression |
1 | | inss1 4159 |
. . . . . . . . 9
⊢ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (𝐴 sadd 𝐵) |
2 | | sadval.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆
ℕ0) |
3 | | sadval.b |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ⊆
ℕ0) |
4 | | sadval.c |
. . . . . . . . . . 11
⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1)))) |
5 | 2, 3, 4 | sadfval 16087 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣
hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘))}) |
6 | | ssrab2 4009 |
. . . . . . . . . 10
⊢ {𝑘 ∈ ℕ0
∣ hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘))} ⊆
ℕ0 |
7 | 5, 6 | eqsstrdi 3971 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 sadd 𝐵) ⊆
ℕ0) |
8 | 1, 7 | sstrid 3928 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆
ℕ0) |
9 | | fzofi 13622 |
. . . . . . . . . 10
⊢
(0..^𝑁) ∈
Fin |
10 | 9 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (0..^𝑁) ∈ Fin) |
11 | | inss2 4160 |
. . . . . . . . 9
⊢ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁) |
12 | | ssfi 8918 |
. . . . . . . . 9
⊢
(((0..^𝑁) ∈ Fin
∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin) |
13 | 10, 11, 12 | sylancl 585 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin) |
14 | | elfpw 9051 |
. . . . . . . 8
⊢ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin) ↔ (((𝐴 sadd
𝐵) ∩ (0..^𝑁)) ⊆ ℕ0
∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)) |
15 | 8, 13, 14 | sylanbrc 582 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin)) |
16 | | bitsf1o 16080 |
. . . . . . . . . 10
⊢ (bits
↾ ℕ0):ℕ0–1-1-onto→(𝒫 ℕ0 ∩
Fin) |
17 | | f1ocnv 6712 |
. . . . . . . . . 10
⊢ ((bits
↾ ℕ0):ℕ0–1-1-onto→(𝒫 ℕ0 ∩ Fin)
→ ◡(bits ↾
ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0) |
18 | | f1of 6700 |
. . . . . . . . . 10
⊢ (◡(bits ↾
ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0 → ◡(bits ↾
ℕ0):(𝒫 ℕ0 ∩
Fin)⟶ℕ0) |
19 | 16, 17, 18 | mp2b 10 |
. . . . . . . . 9
⊢ ◡(bits ↾
ℕ0):(𝒫 ℕ0 ∩
Fin)⟶ℕ0 |
20 | | sadcadd.k |
. . . . . . . . . 10
⊢ 𝐾 = ◡(bits ↾
ℕ0) |
21 | 20 | feq1i 6575 |
. . . . . . . . 9
⊢ (𝐾:(𝒫 ℕ0
∩ Fin)⟶ℕ0 ↔ ◡(bits ↾
ℕ0):(𝒫 ℕ0 ∩
Fin)⟶ℕ0) |
22 | 19, 21 | mpbir 230 |
. . . . . . . 8
⊢ 𝐾:(𝒫 ℕ0
∩ Fin)⟶ℕ0 |
23 | 22 | ffvelrni 6942 |
. . . . . . 7
⊢ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin) → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈
ℕ0) |
24 | 15, 23 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈
ℕ0) |
25 | 24 | nn0cnd 12225 |
. . . . 5
⊢ (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℂ) |
26 | | 2nn0 12180 |
. . . . . . . . . 10
⊢ 2 ∈
ℕ0 |
27 | 26 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 2 ∈
ℕ0) |
28 | | sadcp1.n |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
29 | 27, 28 | nn0expcld 13889 |
. . . . . . . 8
⊢ (𝜑 → (2↑𝑁) ∈
ℕ0) |
30 | | 0nn0 12178 |
. . . . . . . 8
⊢ 0 ∈
ℕ0 |
31 | | ifcl 4501 |
. . . . . . . 8
⊢
(((2↑𝑁) ∈
ℕ0 ∧ 0 ∈ ℕ0) → if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) ∈
ℕ0) |
32 | 29, 30, 31 | sylancl 585 |
. . . . . . 7
⊢ (𝜑 → if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) ∈
ℕ0) |
33 | 32 | nn0cnd 12225 |
. . . . . 6
⊢ (𝜑 → if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) ∈ ℂ) |
34 | | 1nn0 12179 |
. . . . . . . . . . 11
⊢ 1 ∈
ℕ0 |
35 | 34 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℕ0) |
36 | 28, 35 | nn0addcld 12227 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 + 1) ∈
ℕ0) |
37 | 27, 36 | nn0expcld 13889 |
. . . . . . . 8
⊢ (𝜑 → (2↑(𝑁 + 1)) ∈
ℕ0) |
38 | | ifcl 4501 |
. . . . . . . 8
⊢
(((2↑(𝑁 + 1))
∈ ℕ0 ∧ 0 ∈ ℕ0) →
if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0) ∈
ℕ0) |
39 | 37, 30, 38 | sylancl 585 |
. . . . . . 7
⊢ (𝜑 → if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0) ∈
ℕ0) |
40 | 39 | nn0cnd 12225 |
. . . . . 6
⊢ (𝜑 → if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0) ∈ ℂ) |
41 | 33, 40 | addcld 10925 |
. . . . 5
⊢ (𝜑 → (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) ∈ ℂ) |
42 | 25, 41 | addcld 10925 |
. . . 4
⊢ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) ∈
ℂ) |
43 | | inss1 4159 |
. . . . . . . . . 10
⊢ (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴 |
44 | 43, 2 | sstrid 3928 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆
ℕ0) |
45 | | inss2 4160 |
. . . . . . . . . 10
⊢ (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁) |
46 | | ssfi 8918 |
. . . . . . . . . 10
⊢
(((0..^𝑁) ∈ Fin
∧ (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐴 ∩ (0..^𝑁)) ∈ Fin) |
47 | 10, 45, 46 | sylancl 585 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 ∩ (0..^𝑁)) ∈ Fin) |
48 | | elfpw 9051 |
. . . . . . . . 9
⊢ ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin) ↔ ((𝐴 ∩
(0..^𝑁)) ⊆
ℕ0 ∧ (𝐴 ∩ (0..^𝑁)) ∈ Fin)) |
49 | 44, 47, 48 | sylanbrc 582 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin)) |
50 | 22 | ffvelrni 6942 |
. . . . . . . 8
⊢ ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin) → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈
ℕ0) |
51 | 49, 50 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈
ℕ0) |
52 | 51 | nn0cnd 12225 |
. . . . . 6
⊢ (𝜑 → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℂ) |
53 | | inss1 4159 |
. . . . . . . . . 10
⊢ (𝐵 ∩ (0..^𝑁)) ⊆ 𝐵 |
54 | 53, 3 | sstrid 3928 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 ∩ (0..^𝑁)) ⊆
ℕ0) |
55 | | inss2 4160 |
. . . . . . . . . 10
⊢ (𝐵 ∩ (0..^𝑁)) ⊆ (0..^𝑁) |
56 | | ssfi 8918 |
. . . . . . . . . 10
⊢
(((0..^𝑁) ∈ Fin
∧ (𝐵 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐵 ∩ (0..^𝑁)) ∈ Fin) |
57 | 10, 55, 56 | sylancl 585 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 ∩ (0..^𝑁)) ∈ Fin) |
58 | | elfpw 9051 |
. . . . . . . . 9
⊢ ((𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin) ↔ ((𝐵 ∩
(0..^𝑁)) ⊆
ℕ0 ∧ (𝐵 ∩ (0..^𝑁)) ∈ Fin)) |
59 | 54, 57, 58 | sylanbrc 582 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin)) |
60 | 22 | ffvelrni 6942 |
. . . . . . . 8
⊢ ((𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin) → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈
ℕ0) |
61 | 59, 60 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈
ℕ0) |
62 | 61 | nn0cnd 12225 |
. . . . . 6
⊢ (𝜑 → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℂ) |
63 | 52, 62 | addcld 10925 |
. . . . 5
⊢ (𝜑 → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) ∈ ℂ) |
64 | | ifcl 4501 |
. . . . . . . 8
⊢
(((2↑𝑁) ∈
ℕ0 ∧ 0 ∈ ℕ0) → if(𝑁 ∈ 𝐴, (2↑𝑁), 0) ∈
ℕ0) |
65 | 29, 30, 64 | sylancl 585 |
. . . . . . 7
⊢ (𝜑 → if(𝑁 ∈ 𝐴, (2↑𝑁), 0) ∈
ℕ0) |
66 | 65 | nn0cnd 12225 |
. . . . . 6
⊢ (𝜑 → if(𝑁 ∈ 𝐴, (2↑𝑁), 0) ∈ ℂ) |
67 | | ifcl 4501 |
. . . . . . . 8
⊢
(((2↑𝑁) ∈
ℕ0 ∧ 0 ∈ ℕ0) → if(𝑁 ∈ 𝐵, (2↑𝑁), 0) ∈
ℕ0) |
68 | 29, 30, 67 | sylancl 585 |
. . . . . . 7
⊢ (𝜑 → if(𝑁 ∈ 𝐵, (2↑𝑁), 0) ∈
ℕ0) |
69 | 68 | nn0cnd 12225 |
. . . . . 6
⊢ (𝜑 → if(𝑁 ∈ 𝐵, (2↑𝑁), 0) ∈ ℂ) |
70 | 66, 69 | addcld 10925 |
. . . . 5
⊢ (𝜑 → (if(𝑁 ∈ 𝐴, (2↑𝑁), 0) + if(𝑁 ∈ 𝐵, (2↑𝑁), 0)) ∈ ℂ) |
71 | 63, 70 | addcld 10925 |
. . . 4
⊢ (𝜑 → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁 ∈ 𝐴, (2↑𝑁), 0) + if(𝑁 ∈ 𝐵, (2↑𝑁), 0))) ∈ ℂ) |
72 | 29 | nn0cnd 12225 |
. . . . . 6
⊢ (𝜑 → (2↑𝑁) ∈ ℂ) |
73 | 72 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ∅ ∈ (𝐶‘𝑁)) → (2↑𝑁) ∈ ℂ) |
74 | | 0cnd 10899 |
. . . . 5
⊢ ((𝜑 ∧ ¬ ∅ ∈ (𝐶‘𝑁)) → 0 ∈ ℂ) |
75 | 73, 74 | ifclda 4491 |
. . . 4
⊢ (𝜑 → if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0) ∈ ℂ) |
76 | | sadadd2lem.1 |
. . . . . 6
⊢ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))) |
77 | 2, 3, 4, 28 | sadval 16091 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ hadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) |
78 | 77 | ifbid 4479 |
. . . . . . . 8
⊢ (𝜑 → if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) = if(hadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), (2↑𝑁), 0)) |
79 | 2, 3, 4, 28 | sadcp1 16090 |
. . . . . . . . 9
⊢ (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) |
80 | 27 | nn0cnd 12225 |
. . . . . . . . . . 11
⊢ (𝜑 → 2 ∈
ℂ) |
81 | 80, 28 | expp1d 13793 |
. . . . . . . . . 10
⊢ (𝜑 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) |
82 | 72, 80 | mulcomd 10927 |
. . . . . . . . . 10
⊢ (𝜑 → ((2↑𝑁) · 2) = (2 · (2↑𝑁))) |
83 | 81, 82 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → (2↑(𝑁 + 1)) = (2 · (2↑𝑁))) |
84 | 79, 83 | ifbieq1d 4480 |
. . . . . . . 8
⊢ (𝜑 → if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0) = if(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), (2 · (2↑𝑁)), 0)) |
85 | 78, 84 | oveq12d 7273 |
. . . . . . 7
⊢ (𝜑 → (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = (if(hadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), (2↑𝑁), 0) + if(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), (2 · (2↑𝑁)), 0))) |
86 | | sadadd2lem2 16085 |
. . . . . . . 8
⊢
((2↑𝑁) ∈
ℂ → (if(hadd(𝑁
∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), (2↑𝑁), 0) + if(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), (2 · (2↑𝑁)), 0)) = ((if(𝑁 ∈ 𝐴, (2↑𝑁), 0) + if(𝑁 ∈ 𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0))) |
87 | 72, 86 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (if(hadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), (2↑𝑁), 0) + if(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), (2 · (2↑𝑁)), 0)) = ((if(𝑁 ∈ 𝐴, (2↑𝑁), 0) + if(𝑁 ∈ 𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0))) |
88 | 85, 87 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = ((if(𝑁 ∈ 𝐴, (2↑𝑁), 0) + if(𝑁 ∈ 𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0))) |
89 | 76, 88 | oveq12d 7273 |
. . . . 5
⊢ (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + ((if(𝑁 ∈ 𝐴, (2↑𝑁), 0) + if(𝑁 ∈ 𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)))) |
90 | 25, 41, 75 | add32d 11132 |
. . . . 5
⊢ (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) = (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)))) |
91 | 63, 70, 75 | addassd 10928 |
. . . . 5
⊢ (𝜑 → ((((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁 ∈ 𝐴, (2↑𝑁), 0) + if(𝑁 ∈ 𝐵, (2↑𝑁), 0))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + ((if(𝑁 ∈ 𝐴, (2↑𝑁), 0) + if(𝑁 ∈ 𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)))) |
92 | 89, 90, 91 | 3eqtr4d 2788 |
. . . 4
⊢ (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) = ((((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁 ∈ 𝐴, (2↑𝑁), 0) + if(𝑁 ∈ 𝐵, (2↑𝑁), 0))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0))) |
93 | 42, 71, 75, 92 | addcan2ad 11111 |
. . 3
⊢ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁 ∈ 𝐴, (2↑𝑁), 0) + if(𝑁 ∈ 𝐵, (2↑𝑁), 0)))) |
94 | 25, 33, 40 | addassd 10928 |
. . 3
⊢ (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0)) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)))) |
95 | 52, 66, 62, 69 | add4d 11133 |
. . 3
⊢ (𝜑 → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁 ∈ 𝐴, (2↑𝑁), 0)) + ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁 ∈ 𝐵, (2↑𝑁), 0))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁 ∈ 𝐴, (2↑𝑁), 0) + if(𝑁 ∈ 𝐵, (2↑𝑁), 0)))) |
96 | 93, 94, 95 | 3eqtr4d 2788 |
. 2
⊢ (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0)) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁 ∈ 𝐴, (2↑𝑁), 0)) + ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁 ∈ 𝐵, (2↑𝑁), 0)))) |
97 | 20 | bitsinvp1 16084 |
. . . 4
⊢ (((𝐴 sadd 𝐵) ⊆ ℕ0 ∧ 𝑁 ∈ ℕ0)
→ (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0))) |
98 | 7, 28, 97 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0))) |
99 | 98 | oveq1d 7270 |
. 2
⊢ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0)) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) |
100 | 20 | bitsinvp1 16084 |
. . . 4
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁 ∈ 𝐴, (2↑𝑁), 0))) |
101 | 2, 28, 100 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁 ∈ 𝐴, (2↑𝑁), 0))) |
102 | 20 | bitsinvp1 16084 |
. . . 4
⊢ ((𝐵 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁 ∈ 𝐵, (2↑𝑁), 0))) |
103 | 3, 28, 102 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁 ∈ 𝐵, (2↑𝑁), 0))) |
104 | 101, 103 | oveq12d 7273 |
. 2
⊢ (𝜑 → ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1))))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁 ∈ 𝐴, (2↑𝑁), 0)) + ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁 ∈ 𝐵, (2↑𝑁), 0)))) |
105 | 96, 99, 104 | 3eqtr4d 2788 |
1
⊢ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1)))))) |