MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd2lem Structured version   Visualization version   GIF version

Theorem sadadd2lem 16405
Description: Lemma for sadadd2 16406. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadcp1.n (𝜑𝑁 ∈ ℕ0)
sadcadd.k 𝐾 = (bits ↾ ℕ0)
sadadd2lem.1 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
Assertion
Ref Expression
sadadd2lem (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1))))))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝐾(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadadd2lem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 inss1 4196 . . . . . . . . 9 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (𝐴 sadd 𝐵)
2 sadval.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℕ0)
3 sadval.b . . . . . . . . . . 11 (𝜑𝐵 ⊆ ℕ0)
4 sadval.c . . . . . . . . . . 11 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
52, 3, 4sadfval 16398 . . . . . . . . . 10 (𝜑 → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))})
6 ssrab2 4039 . . . . . . . . . 10 {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))} ⊆ ℕ0
75, 6eqsstrdi 3988 . . . . . . . . 9 (𝜑 → (𝐴 sadd 𝐵) ⊆ ℕ0)
81, 7sstrid 3955 . . . . . . . 8 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0)
9 fzofi 13915 . . . . . . . . . 10 (0..^𝑁) ∈ Fin
109a1i 11 . . . . . . . . 9 (𝜑 → (0..^𝑁) ∈ Fin)
11 inss2 4197 . . . . . . . . 9 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
12 ssfi 9114 . . . . . . . . 9 (((0..^𝑁) ∈ Fin ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
1310, 11, 12sylancl 586 . . . . . . . 8 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
14 elfpw 9281 . . . . . . . 8 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin))
158, 13, 14sylanbrc 583 . . . . . . 7 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
16 bitsf1o 16391 . . . . . . . . . 10 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
17 f1ocnv 6794 . . . . . . . . . 10 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
18 f1of 6782 . . . . . . . . . 10 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
1916, 17, 18mp2b 10 . . . . . . . . 9 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0
20 sadcadd.k . . . . . . . . . 10 𝐾 = (bits ↾ ℕ0)
2120feq1i 6661 . . . . . . . . 9 (𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
2219, 21mpbir 231 . . . . . . . 8 𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0
2322ffvelcdmi 7037 . . . . . . 7 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
2415, 23syl 17 . . . . . 6 (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
2524nn0cnd 12481 . . . . 5 (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℂ)
26 2nn0 12435 . . . . . . . . . 10 2 ∈ ℕ0
2726a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℕ0)
28 sadcp1.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
2927, 28nn0expcld 14187 . . . . . . . 8 (𝜑 → (2↑𝑁) ∈ ℕ0)
30 0nn0 12433 . . . . . . . 8 0 ∈ ℕ0
31 ifcl 4530 . . . . . . . 8 (((2↑𝑁) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) ∈ ℕ0)
3229, 30, 31sylancl 586 . . . . . . 7 (𝜑 → if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) ∈ ℕ0)
3332nn0cnd 12481 . . . . . 6 (𝜑 → if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) ∈ ℂ)
34 1nn0 12434 . . . . . . . . . . 11 1 ∈ ℕ0
3534a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ ℕ0)
3628, 35nn0addcld 12483 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℕ0)
3727, 36nn0expcld 14187 . . . . . . . 8 (𝜑 → (2↑(𝑁 + 1)) ∈ ℕ0)
38 ifcl 4530 . . . . . . . 8 (((2↑(𝑁 + 1)) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0) ∈ ℕ0)
3937, 30, 38sylancl 586 . . . . . . 7 (𝜑 → if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0) ∈ ℕ0)
4039nn0cnd 12481 . . . . . 6 (𝜑 → if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0) ∈ ℂ)
4133, 40addcld 11169 . . . . 5 (𝜑 → (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) ∈ ℂ)
4225, 41addcld 11169 . . . 4 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) ∈ ℂ)
43 inss1 4196 . . . . . . . . . 10 (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴
4443, 2sstrid 3955 . . . . . . . . 9 (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
45 inss2 4197 . . . . . . . . . 10 (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
46 ssfi 9114 . . . . . . . . . 10 (((0..^𝑁) ∈ Fin ∧ (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
4710, 45, 46sylancl 586 . . . . . . . . 9 (𝜑 → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
48 elfpw 9281 . . . . . . . . 9 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐴 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐴 ∩ (0..^𝑁)) ∈ Fin))
4944, 47, 48sylanbrc 583 . . . . . . . 8 (𝜑 → (𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
5022ffvelcdmi 7037 . . . . . . . 8 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℕ0)
5149, 50syl 17 . . . . . . 7 (𝜑 → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℕ0)
5251nn0cnd 12481 . . . . . 6 (𝜑 → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℂ)
53 inss1 4196 . . . . . . . . . 10 (𝐵 ∩ (0..^𝑁)) ⊆ 𝐵
5453, 3sstrid 3955 . . . . . . . . 9 (𝜑 → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
55 inss2 4197 . . . . . . . . . 10 (𝐵 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
56 ssfi 9114 . . . . . . . . . 10 (((0..^𝑁) ∈ Fin ∧ (𝐵 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐵 ∩ (0..^𝑁)) ∈ Fin)
5710, 55, 56sylancl 586 . . . . . . . . 9 (𝜑 → (𝐵 ∩ (0..^𝑁)) ∈ Fin)
58 elfpw 9281 . . . . . . . . 9 ((𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐵 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐵 ∩ (0..^𝑁)) ∈ Fin))
5954, 57, 58sylanbrc 583 . . . . . . . 8 (𝜑 → (𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
6022ffvelcdmi 7037 . . . . . . . 8 ((𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℕ0)
6159, 60syl 17 . . . . . . 7 (𝜑 → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℕ0)
6261nn0cnd 12481 . . . . . 6 (𝜑 → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℂ)
6352, 62addcld 11169 . . . . 5 (𝜑 → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) ∈ ℂ)
64 ifcl 4530 . . . . . . . 8 (((2↑𝑁) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑁𝐴, (2↑𝑁), 0) ∈ ℕ0)
6529, 30, 64sylancl 586 . . . . . . 7 (𝜑 → if(𝑁𝐴, (2↑𝑁), 0) ∈ ℕ0)
6665nn0cnd 12481 . . . . . 6 (𝜑 → if(𝑁𝐴, (2↑𝑁), 0) ∈ ℂ)
67 ifcl 4530 . . . . . . . 8 (((2↑𝑁) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑁𝐵, (2↑𝑁), 0) ∈ ℕ0)
6829, 30, 67sylancl 586 . . . . . . 7 (𝜑 → if(𝑁𝐵, (2↑𝑁), 0) ∈ ℕ0)
6968nn0cnd 12481 . . . . . 6 (𝜑 → if(𝑁𝐵, (2↑𝑁), 0) ∈ ℂ)
7066, 69addcld 11169 . . . . 5 (𝜑 → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ∈ ℂ)
7163, 70addcld 11169 . . . 4 (𝜑 → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) ∈ ℂ)
7229nn0cnd 12481 . . . . . 6 (𝜑 → (2↑𝑁) ∈ ℂ)
7372adantr 480 . . . . 5 ((𝜑 ∧ ∅ ∈ (𝐶𝑁)) → (2↑𝑁) ∈ ℂ)
74 0cnd 11143 . . . . 5 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → 0 ∈ ℂ)
7573, 74ifclda 4520 . . . 4 (𝜑 → if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0) ∈ ℂ)
76 sadadd2lem.1 . . . . . 6 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
772, 3, 4, 28sadval 16402 . . . . . . . . 9 (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
7877ifbid 4508 . . . . . . . 8 (𝜑 → if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) = if(hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2↑𝑁), 0))
792, 3, 4, 28sadcp1 16401 . . . . . . . . 9 (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
8027nn0cnd 12481 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℂ)
8180, 28expp1d 14088 . . . . . . . . . 10 (𝜑 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
8272, 80mulcomd 11171 . . . . . . . . . 10 (𝜑 → ((2↑𝑁) · 2) = (2 · (2↑𝑁)))
8381, 82eqtrd 2764 . . . . . . . . 9 (𝜑 → (2↑(𝑁 + 1)) = (2 · (2↑𝑁)))
8479, 83ifbieq1d 4509 . . . . . . . 8 (𝜑 → if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0) = if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2 · (2↑𝑁)), 0))
8578, 84oveq12d 7387 . . . . . . 7 (𝜑 → (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = (if(hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2↑𝑁), 0) + if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2 · (2↑𝑁)), 0)))
86 sadadd2lem2 16396 . . . . . . . 8 ((2↑𝑁) ∈ ℂ → (if(hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2↑𝑁), 0) + if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2 · (2↑𝑁)), 0)) = ((if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
8772, 86syl 17 . . . . . . 7 (𝜑 → (if(hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2↑𝑁), 0) + if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2 · (2↑𝑁)), 0)) = ((if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
8885, 87eqtrd 2764 . . . . . 6 (𝜑 → (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = ((if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
8976, 88oveq12d 7387 . . . . 5 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + ((if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0))))
9025, 41, 75add32d 11378 . . . . 5 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))))
9163, 70, 75addassd 11172 . . . . 5 (𝜑 → ((((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + ((if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0))))
9289, 90, 913eqtr4d 2774 . . . 4 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
9342, 71, 75, 92addcan2ad 11356 . . 3 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))))
9425, 33, 40addassd 11172 . . 3 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0)) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))))
9552, 66, 62, 69add4d 11379 . . 3 (𝜑 → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)) + ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))))
9693, 94, 953eqtr4d 2774 . 2 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0)) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)) + ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0))))
9720bitsinvp1 16395 . . . 4 (((𝐴 sadd 𝐵) ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0)))
987, 28, 97syl2anc 584 . . 3 (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0)))
9998oveq1d 7384 . 2 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0)) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)))
10020bitsinvp1 16395 . . . 4 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)))
1012, 28, 100syl2anc 584 . . 3 (𝜑 → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)))
10220bitsinvp1 16395 . . . 4 ((𝐵 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0)))
1033, 28, 102syl2anc 584 . . 3 (𝜑 → (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0)))
104101, 103oveq12d 7387 . 2 (𝜑 → ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1))))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)) + ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0))))
10596, 99, 1043eqtr4d 2774 1 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  haddwhad 1593  caddwcad 1606  wcel 2109  {crab 3402  cin 3910  wss 3911  c0 4292  ifcif 4484  𝒫 cpw 4559  cmpt 5183  ccnv 5630  cres 5633  wf 6495  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  cmpo 7371  1oc1o 8404  2oc2o 8405  Fincfn 8895  cc 11042  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cmin 11381  2c2 12217  0cn0 12418  ..^cfzo 13591  seqcseq 13942  cexp 14002  bitscbits 16365   sadd csad 16366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-had 1594  df-cad 1607  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-dvds 16199  df-bits 16368  df-sad 16397
This theorem is referenced by:  sadadd2  16406
  Copyright terms: Public domain W3C validator