MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd2lem Structured version   Visualization version   GIF version

Theorem sadadd2lem 16429
Description: Lemma for sadadd2 16430. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadcp1.n (𝜑𝑁 ∈ ℕ0)
sadcadd.k 𝐾 = (bits ↾ ℕ0)
sadadd2lem.1 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
Assertion
Ref Expression
sadadd2lem (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1))))))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝐾(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadadd2lem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 inss1 4200 . . . . . . . . 9 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (𝐴 sadd 𝐵)
2 sadval.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℕ0)
3 sadval.b . . . . . . . . . . 11 (𝜑𝐵 ⊆ ℕ0)
4 sadval.c . . . . . . . . . . 11 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
52, 3, 4sadfval 16422 . . . . . . . . . 10 (𝜑 → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))})
6 ssrab2 4043 . . . . . . . . . 10 {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))} ⊆ ℕ0
75, 6eqsstrdi 3991 . . . . . . . . 9 (𝜑 → (𝐴 sadd 𝐵) ⊆ ℕ0)
81, 7sstrid 3958 . . . . . . . 8 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0)
9 fzofi 13939 . . . . . . . . . 10 (0..^𝑁) ∈ Fin
109a1i 11 . . . . . . . . 9 (𝜑 → (0..^𝑁) ∈ Fin)
11 inss2 4201 . . . . . . . . 9 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
12 ssfi 9137 . . . . . . . . 9 (((0..^𝑁) ∈ Fin ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
1310, 11, 12sylancl 586 . . . . . . . 8 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
14 elfpw 9305 . . . . . . . 8 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin))
158, 13, 14sylanbrc 583 . . . . . . 7 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
16 bitsf1o 16415 . . . . . . . . . 10 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
17 f1ocnv 6812 . . . . . . . . . 10 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
18 f1of 6800 . . . . . . . . . 10 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
1916, 17, 18mp2b 10 . . . . . . . . 9 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0
20 sadcadd.k . . . . . . . . . 10 𝐾 = (bits ↾ ℕ0)
2120feq1i 6679 . . . . . . . . 9 (𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
2219, 21mpbir 231 . . . . . . . 8 𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0
2322ffvelcdmi 7055 . . . . . . 7 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
2415, 23syl 17 . . . . . 6 (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
2524nn0cnd 12505 . . . . 5 (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℂ)
26 2nn0 12459 . . . . . . . . . 10 2 ∈ ℕ0
2726a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℕ0)
28 sadcp1.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
2927, 28nn0expcld 14211 . . . . . . . 8 (𝜑 → (2↑𝑁) ∈ ℕ0)
30 0nn0 12457 . . . . . . . 8 0 ∈ ℕ0
31 ifcl 4534 . . . . . . . 8 (((2↑𝑁) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) ∈ ℕ0)
3229, 30, 31sylancl 586 . . . . . . 7 (𝜑 → if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) ∈ ℕ0)
3332nn0cnd 12505 . . . . . 6 (𝜑 → if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) ∈ ℂ)
34 1nn0 12458 . . . . . . . . . . 11 1 ∈ ℕ0
3534a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ ℕ0)
3628, 35nn0addcld 12507 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℕ0)
3727, 36nn0expcld 14211 . . . . . . . 8 (𝜑 → (2↑(𝑁 + 1)) ∈ ℕ0)
38 ifcl 4534 . . . . . . . 8 (((2↑(𝑁 + 1)) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0) ∈ ℕ0)
3937, 30, 38sylancl 586 . . . . . . 7 (𝜑 → if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0) ∈ ℕ0)
4039nn0cnd 12505 . . . . . 6 (𝜑 → if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0) ∈ ℂ)
4133, 40addcld 11193 . . . . 5 (𝜑 → (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) ∈ ℂ)
4225, 41addcld 11193 . . . 4 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) ∈ ℂ)
43 inss1 4200 . . . . . . . . . 10 (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴
4443, 2sstrid 3958 . . . . . . . . 9 (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
45 inss2 4201 . . . . . . . . . 10 (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
46 ssfi 9137 . . . . . . . . . 10 (((0..^𝑁) ∈ Fin ∧ (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
4710, 45, 46sylancl 586 . . . . . . . . 9 (𝜑 → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
48 elfpw 9305 . . . . . . . . 9 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐴 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐴 ∩ (0..^𝑁)) ∈ Fin))
4944, 47, 48sylanbrc 583 . . . . . . . 8 (𝜑 → (𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
5022ffvelcdmi 7055 . . . . . . . 8 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℕ0)
5149, 50syl 17 . . . . . . 7 (𝜑 → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℕ0)
5251nn0cnd 12505 . . . . . 6 (𝜑 → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℂ)
53 inss1 4200 . . . . . . . . . 10 (𝐵 ∩ (0..^𝑁)) ⊆ 𝐵
5453, 3sstrid 3958 . . . . . . . . 9 (𝜑 → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
55 inss2 4201 . . . . . . . . . 10 (𝐵 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
56 ssfi 9137 . . . . . . . . . 10 (((0..^𝑁) ∈ Fin ∧ (𝐵 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐵 ∩ (0..^𝑁)) ∈ Fin)
5710, 55, 56sylancl 586 . . . . . . . . 9 (𝜑 → (𝐵 ∩ (0..^𝑁)) ∈ Fin)
58 elfpw 9305 . . . . . . . . 9 ((𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐵 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐵 ∩ (0..^𝑁)) ∈ Fin))
5954, 57, 58sylanbrc 583 . . . . . . . 8 (𝜑 → (𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
6022ffvelcdmi 7055 . . . . . . . 8 ((𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℕ0)
6159, 60syl 17 . . . . . . 7 (𝜑 → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℕ0)
6261nn0cnd 12505 . . . . . 6 (𝜑 → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℂ)
6352, 62addcld 11193 . . . . 5 (𝜑 → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) ∈ ℂ)
64 ifcl 4534 . . . . . . . 8 (((2↑𝑁) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑁𝐴, (2↑𝑁), 0) ∈ ℕ0)
6529, 30, 64sylancl 586 . . . . . . 7 (𝜑 → if(𝑁𝐴, (2↑𝑁), 0) ∈ ℕ0)
6665nn0cnd 12505 . . . . . 6 (𝜑 → if(𝑁𝐴, (2↑𝑁), 0) ∈ ℂ)
67 ifcl 4534 . . . . . . . 8 (((2↑𝑁) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑁𝐵, (2↑𝑁), 0) ∈ ℕ0)
6829, 30, 67sylancl 586 . . . . . . 7 (𝜑 → if(𝑁𝐵, (2↑𝑁), 0) ∈ ℕ0)
6968nn0cnd 12505 . . . . . 6 (𝜑 → if(𝑁𝐵, (2↑𝑁), 0) ∈ ℂ)
7066, 69addcld 11193 . . . . 5 (𝜑 → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ∈ ℂ)
7163, 70addcld 11193 . . . 4 (𝜑 → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) ∈ ℂ)
7229nn0cnd 12505 . . . . . 6 (𝜑 → (2↑𝑁) ∈ ℂ)
7372adantr 480 . . . . 5 ((𝜑 ∧ ∅ ∈ (𝐶𝑁)) → (2↑𝑁) ∈ ℂ)
74 0cnd 11167 . . . . 5 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → 0 ∈ ℂ)
7573, 74ifclda 4524 . . . 4 (𝜑 → if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0) ∈ ℂ)
76 sadadd2lem.1 . . . . . 6 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
772, 3, 4, 28sadval 16426 . . . . . . . . 9 (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
7877ifbid 4512 . . . . . . . 8 (𝜑 → if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) = if(hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2↑𝑁), 0))
792, 3, 4, 28sadcp1 16425 . . . . . . . . 9 (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
8027nn0cnd 12505 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℂ)
8180, 28expp1d 14112 . . . . . . . . . 10 (𝜑 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
8272, 80mulcomd 11195 . . . . . . . . . 10 (𝜑 → ((2↑𝑁) · 2) = (2 · (2↑𝑁)))
8381, 82eqtrd 2764 . . . . . . . . 9 (𝜑 → (2↑(𝑁 + 1)) = (2 · (2↑𝑁)))
8479, 83ifbieq1d 4513 . . . . . . . 8 (𝜑 → if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0) = if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2 · (2↑𝑁)), 0))
8578, 84oveq12d 7405 . . . . . . 7 (𝜑 → (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = (if(hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2↑𝑁), 0) + if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2 · (2↑𝑁)), 0)))
86 sadadd2lem2 16420 . . . . . . . 8 ((2↑𝑁) ∈ ℂ → (if(hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2↑𝑁), 0) + if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2 · (2↑𝑁)), 0)) = ((if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
8772, 86syl 17 . . . . . . 7 (𝜑 → (if(hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2↑𝑁), 0) + if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2 · (2↑𝑁)), 0)) = ((if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
8885, 87eqtrd 2764 . . . . . 6 (𝜑 → (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = ((if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
8976, 88oveq12d 7405 . . . . 5 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + ((if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0))))
9025, 41, 75add32d 11402 . . . . 5 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))))
9163, 70, 75addassd 11196 . . . . 5 (𝜑 → ((((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + ((if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0))))
9289, 90, 913eqtr4d 2774 . . . 4 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
9342, 71, 75, 92addcan2ad 11380 . . 3 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))))
9425, 33, 40addassd 11196 . . 3 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0)) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))))
9552, 66, 62, 69add4d 11403 . . 3 (𝜑 → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)) + ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))))
9693, 94, 953eqtr4d 2774 . 2 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0)) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)) + ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0))))
9720bitsinvp1 16419 . . . 4 (((𝐴 sadd 𝐵) ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0)))
987, 28, 97syl2anc 584 . . 3 (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0)))
9998oveq1d 7402 . 2 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0)) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)))
10020bitsinvp1 16419 . . . 4 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)))
1012, 28, 100syl2anc 584 . . 3 (𝜑 → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)))
10220bitsinvp1 16419 . . . 4 ((𝐵 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0)))
1033, 28, 102syl2anc 584 . . 3 (𝜑 → (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0)))
104101, 103oveq12d 7405 . 2 (𝜑 → ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1))))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)) + ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0))))
10596, 99, 1043eqtr4d 2774 1 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  haddwhad 1593  caddwcad 1606  wcel 2109  {crab 3405  cin 3913  wss 3914  c0 4296  ifcif 4488  𝒫 cpw 4563  cmpt 5188  ccnv 5637  cres 5640  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cmpo 7389  1oc1o 8427  2oc2o 8428  Fincfn 8918  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405  2c2 12241  0cn0 12442  ..^cfzo 13615  seqcseq 13966  cexp 14026  bitscbits 16389   sadd csad 16390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-had 1594  df-cad 1607  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-dvds 16223  df-bits 16392  df-sad 16421
This theorem is referenced by:  sadadd2  16430
  Copyright terms: Public domain W3C validator