MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsinv2 Structured version   Visualization version   GIF version

Theorem bitsinv2 16420
Description: There is an explicit inverse to the bits function for nonnegative integers, part 2. (Contributed by Mario Carneiro, 8-Sep-2016.)
Assertion
Ref Expression
bitsinv2 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (bits‘Σ𝑛𝐴 (2↑𝑛)) = 𝐴)
Distinct variable group:   𝐴,𝑛

Proof of Theorem bitsinv2
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elinel2 4168 . . . . 5 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → 𝐴 ∈ Fin)
2 2nn0 12466 . . . . . . 7 2 ∈ ℕ0
32a1i 11 . . . . . 6 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑛𝐴) → 2 ∈ ℕ0)
4 elfpw 9312 . . . . . . . 8 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ↔ (𝐴 ⊆ ℕ0𝐴 ∈ Fin))
54simplbi 497 . . . . . . 7 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → 𝐴 ⊆ ℕ0)
65sselda 3949 . . . . . 6 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑛𝐴) → 𝑛 ∈ ℕ0)
73, 6nn0expcld 14218 . . . . 5 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑛𝐴) → (2↑𝑛) ∈ ℕ0)
81, 7fsumnn0cl 15709 . . . 4 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → Σ𝑛𝐴 (2↑𝑛) ∈ ℕ0)
9 bitsinv1 16419 . . . 4 𝑛𝐴 (2↑𝑛) ∈ ℕ0 → Σ𝑚 ∈ (bits‘Σ𝑛𝐴 (2↑𝑛))(2↑𝑚) = Σ𝑛𝐴 (2↑𝑛))
108, 9syl 17 . . 3 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → Σ𝑚 ∈ (bits‘Σ𝑛𝐴 (2↑𝑛))(2↑𝑚) = Σ𝑛𝐴 (2↑𝑛))
11 bitsss 16403 . . . . . 6 (bits‘Σ𝑛𝐴 (2↑𝑛)) ⊆ ℕ0
1211a1i 11 . . . . 5 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (bits‘Σ𝑛𝐴 (2↑𝑛)) ⊆ ℕ0)
13 bitsfi 16414 . . . . . 6 𝑛𝐴 (2↑𝑛) ∈ ℕ0 → (bits‘Σ𝑛𝐴 (2↑𝑛)) ∈ Fin)
148, 13syl 17 . . . . 5 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (bits‘Σ𝑛𝐴 (2↑𝑛)) ∈ Fin)
15 elfpw 9312 . . . . 5 ((bits‘Σ𝑛𝐴 (2↑𝑛)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((bits‘Σ𝑛𝐴 (2↑𝑛)) ⊆ ℕ0 ∧ (bits‘Σ𝑛𝐴 (2↑𝑛)) ∈ Fin))
1612, 14, 15sylanbrc 583 . . . 4 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (bits‘Σ𝑛𝐴 (2↑𝑛)) ∈ (𝒫 ℕ0 ∩ Fin))
17 oveq2 7398 . . . . . . 7 (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚))
1817cbvsumv 15669 . . . . . 6 Σ𝑛𝑘 (2↑𝑛) = Σ𝑚𝑘 (2↑𝑚)
19 sumeq1 15662 . . . . . 6 (𝑘 = (bits‘Σ𝑛𝐴 (2↑𝑛)) → Σ𝑚𝑘 (2↑𝑚) = Σ𝑚 ∈ (bits‘Σ𝑛𝐴 (2↑𝑛))(2↑𝑚))
2018, 19eqtrid 2777 . . . . 5 (𝑘 = (bits‘Σ𝑛𝐴 (2↑𝑛)) → Σ𝑛𝑘 (2↑𝑛) = Σ𝑚 ∈ (bits‘Σ𝑛𝐴 (2↑𝑛))(2↑𝑚))
21 eqid 2730 . . . . 5 (𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛)) = (𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))
22 sumex 15661 . . . . 5 Σ𝑚 ∈ (bits‘Σ𝑛𝐴 (2↑𝑛))(2↑𝑚) ∈ V
2320, 21, 22fvmpt 6971 . . . 4 ((bits‘Σ𝑛𝐴 (2↑𝑛)) ∈ (𝒫 ℕ0 ∩ Fin) → ((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘(bits‘Σ𝑛𝐴 (2↑𝑛))) = Σ𝑚 ∈ (bits‘Σ𝑛𝐴 (2↑𝑛))(2↑𝑚))
2416, 23syl 17 . . 3 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → ((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘(bits‘Σ𝑛𝐴 (2↑𝑛))) = Σ𝑚 ∈ (bits‘Σ𝑛𝐴 (2↑𝑛))(2↑𝑚))
25 sumeq1 15662 . . . 4 (𝑘 = 𝐴 → Σ𝑛𝑘 (2↑𝑛) = Σ𝑛𝐴 (2↑𝑛))
26 sumex 15661 . . . 4 Σ𝑛𝐴 (2↑𝑛) ∈ V
2725, 21, 26fvmpt 6971 . . 3 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → ((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘𝐴) = Σ𝑛𝐴 (2↑𝑛))
2810, 24, 273eqtr4d 2775 . 2 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → ((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘(bits‘Σ𝑛𝐴 (2↑𝑛))) = ((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘𝐴))
2921ackbijnn 15801 . . . 4 (𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0
30 f1of1 6802 . . . 4 ((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0 → (𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛)):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0)
3129, 30mp1i 13 . . 3 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛)):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0)
32 id 22 . . 3 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → 𝐴 ∈ (𝒫 ℕ0 ∩ Fin))
33 f1fveq 7240 . . 3 (((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛)):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0 ∧ ((bits‘Σ𝑛𝐴 (2↑𝑛)) ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ∈ (𝒫 ℕ0 ∩ Fin))) → (((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘(bits‘Σ𝑛𝐴 (2↑𝑛))) = ((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘𝐴) ↔ (bits‘Σ𝑛𝐴 (2↑𝑛)) = 𝐴))
3431, 16, 32, 33syl12anc 836 . 2 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘(bits‘Σ𝑛𝐴 (2↑𝑛))) = ((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘𝐴) ↔ (bits‘Σ𝑛𝐴 (2↑𝑛)) = 𝐴))
3528, 34mpbid 232 1 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (bits‘Σ𝑛𝐴 (2↑𝑛)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3916  wss 3917  𝒫 cpw 4566  cmpt 5191  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  Fincfn 8921  2c2 12248  0cn0 12449  cexp 14033  Σcsu 15659  bitscbits 16396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-dvds 16230  df-bits 16399
This theorem is referenced by:  bitsf1ocnv  16421  2ebits  16424
  Copyright terms: Public domain W3C validator