MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsinv2 Structured version   Visualization version   GIF version

Theorem bitsinv2 15794
Description: There is an explicit inverse to the bits function for nonnegative integers, part 2. (Contributed by Mario Carneiro, 8-Sep-2016.)
Assertion
Ref Expression
bitsinv2 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (bits‘Σ𝑛𝐴 (2↑𝑛)) = 𝐴)
Distinct variable group:   𝐴,𝑛

Proof of Theorem bitsinv2
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elinel2 4175 . . . . 5 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → 𝐴 ∈ Fin)
2 2nn0 11917 . . . . . . 7 2 ∈ ℕ0
32a1i 11 . . . . . 6 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑛𝐴) → 2 ∈ ℕ0)
4 elfpw 8828 . . . . . . . 8 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ↔ (𝐴 ⊆ ℕ0𝐴 ∈ Fin))
54simplbi 500 . . . . . . 7 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → 𝐴 ⊆ ℕ0)
65sselda 3969 . . . . . 6 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑛𝐴) → 𝑛 ∈ ℕ0)
73, 6nn0expcld 13610 . . . . 5 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑛𝐴) → (2↑𝑛) ∈ ℕ0)
81, 7fsumnn0cl 15095 . . . 4 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → Σ𝑛𝐴 (2↑𝑛) ∈ ℕ0)
9 bitsinv1 15793 . . . 4 𝑛𝐴 (2↑𝑛) ∈ ℕ0 → Σ𝑚 ∈ (bits‘Σ𝑛𝐴 (2↑𝑛))(2↑𝑚) = Σ𝑛𝐴 (2↑𝑛))
108, 9syl 17 . . 3 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → Σ𝑚 ∈ (bits‘Σ𝑛𝐴 (2↑𝑛))(2↑𝑚) = Σ𝑛𝐴 (2↑𝑛))
11 bitsss 15777 . . . . . 6 (bits‘Σ𝑛𝐴 (2↑𝑛)) ⊆ ℕ0
1211a1i 11 . . . . 5 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (bits‘Σ𝑛𝐴 (2↑𝑛)) ⊆ ℕ0)
13 bitsfi 15788 . . . . . 6 𝑛𝐴 (2↑𝑛) ∈ ℕ0 → (bits‘Σ𝑛𝐴 (2↑𝑛)) ∈ Fin)
148, 13syl 17 . . . . 5 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (bits‘Σ𝑛𝐴 (2↑𝑛)) ∈ Fin)
15 elfpw 8828 . . . . 5 ((bits‘Σ𝑛𝐴 (2↑𝑛)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((bits‘Σ𝑛𝐴 (2↑𝑛)) ⊆ ℕ0 ∧ (bits‘Σ𝑛𝐴 (2↑𝑛)) ∈ Fin))
1612, 14, 15sylanbrc 585 . . . 4 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (bits‘Σ𝑛𝐴 (2↑𝑛)) ∈ (𝒫 ℕ0 ∩ Fin))
17 oveq2 7166 . . . . . . 7 (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚))
1817cbvsumv 15055 . . . . . 6 Σ𝑛𝑘 (2↑𝑛) = Σ𝑚𝑘 (2↑𝑚)
19 sumeq1 15047 . . . . . 6 (𝑘 = (bits‘Σ𝑛𝐴 (2↑𝑛)) → Σ𝑚𝑘 (2↑𝑚) = Σ𝑚 ∈ (bits‘Σ𝑛𝐴 (2↑𝑛))(2↑𝑚))
2018, 19syl5eq 2870 . . . . 5 (𝑘 = (bits‘Σ𝑛𝐴 (2↑𝑛)) → Σ𝑛𝑘 (2↑𝑛) = Σ𝑚 ∈ (bits‘Σ𝑛𝐴 (2↑𝑛))(2↑𝑚))
21 eqid 2823 . . . . 5 (𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛)) = (𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))
22 sumex 15046 . . . . 5 Σ𝑚 ∈ (bits‘Σ𝑛𝐴 (2↑𝑛))(2↑𝑚) ∈ V
2320, 21, 22fvmpt 6770 . . . 4 ((bits‘Σ𝑛𝐴 (2↑𝑛)) ∈ (𝒫 ℕ0 ∩ Fin) → ((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘(bits‘Σ𝑛𝐴 (2↑𝑛))) = Σ𝑚 ∈ (bits‘Σ𝑛𝐴 (2↑𝑛))(2↑𝑚))
2416, 23syl 17 . . 3 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → ((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘(bits‘Σ𝑛𝐴 (2↑𝑛))) = Σ𝑚 ∈ (bits‘Σ𝑛𝐴 (2↑𝑛))(2↑𝑚))
25 sumeq1 15047 . . . 4 (𝑘 = 𝐴 → Σ𝑛𝑘 (2↑𝑛) = Σ𝑛𝐴 (2↑𝑛))
26 sumex 15046 . . . 4 Σ𝑛𝐴 (2↑𝑛) ∈ V
2725, 21, 26fvmpt 6770 . . 3 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → ((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘𝐴) = Σ𝑛𝐴 (2↑𝑛))
2810, 24, 273eqtr4d 2868 . 2 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → ((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘(bits‘Σ𝑛𝐴 (2↑𝑛))) = ((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘𝐴))
2921ackbijnn 15185 . . . 4 (𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0
30 f1of1 6616 . . . 4 ((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0 → (𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛)):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0)
3129, 30mp1i 13 . . 3 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛)):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0)
32 id 22 . . 3 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → 𝐴 ∈ (𝒫 ℕ0 ∩ Fin))
33 f1fveq 7022 . . 3 (((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛)):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0 ∧ ((bits‘Σ𝑛𝐴 (2↑𝑛)) ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ∈ (𝒫 ℕ0 ∩ Fin))) → (((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘(bits‘Σ𝑛𝐴 (2↑𝑛))) = ((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘𝐴) ↔ (bits‘Σ𝑛𝐴 (2↑𝑛)) = 𝐴))
3431, 16, 32, 33syl12anc 834 . 2 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘(bits‘Σ𝑛𝐴 (2↑𝑛))) = ((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘𝐴) ↔ (bits‘Σ𝑛𝐴 (2↑𝑛)) = 𝐴))
3528, 34mpbid 234 1 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (bits‘Σ𝑛𝐴 (2↑𝑛)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  cin 3937  wss 3938  𝒫 cpw 4541  cmpt 5148  1-1wf1 6354  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  Fincfn 8511  2c2 11695  0cn0 11900  cexp 13432  Σcsu 15044  bitscbits 15770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-dvds 15610  df-bits 15773
This theorem is referenced by:  bitsf1ocnv  15795  2ebits  15798
  Copyright terms: Public domain W3C validator