MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsinv2 Structured version   Visualization version   GIF version

Theorem bitsinv2 16078
Description: There is an explicit inverse to the bits function for nonnegative integers, part 2. (Contributed by Mario Carneiro, 8-Sep-2016.)
Assertion
Ref Expression
bitsinv2 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (bits‘Σ𝑛𝐴 (2↑𝑛)) = 𝐴)
Distinct variable group:   𝐴,𝑛

Proof of Theorem bitsinv2
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elinel2 4126 . . . . 5 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → 𝐴 ∈ Fin)
2 2nn0 12180 . . . . . . 7 2 ∈ ℕ0
32a1i 11 . . . . . 6 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑛𝐴) → 2 ∈ ℕ0)
4 elfpw 9051 . . . . . . . 8 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ↔ (𝐴 ⊆ ℕ0𝐴 ∈ Fin))
54simplbi 497 . . . . . . 7 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → 𝐴 ⊆ ℕ0)
65sselda 3917 . . . . . 6 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑛𝐴) → 𝑛 ∈ ℕ0)
73, 6nn0expcld 13889 . . . . 5 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑛𝐴) → (2↑𝑛) ∈ ℕ0)
81, 7fsumnn0cl 15376 . . . 4 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → Σ𝑛𝐴 (2↑𝑛) ∈ ℕ0)
9 bitsinv1 16077 . . . 4 𝑛𝐴 (2↑𝑛) ∈ ℕ0 → Σ𝑚 ∈ (bits‘Σ𝑛𝐴 (2↑𝑛))(2↑𝑚) = Σ𝑛𝐴 (2↑𝑛))
108, 9syl 17 . . 3 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → Σ𝑚 ∈ (bits‘Σ𝑛𝐴 (2↑𝑛))(2↑𝑚) = Σ𝑛𝐴 (2↑𝑛))
11 bitsss 16061 . . . . . 6 (bits‘Σ𝑛𝐴 (2↑𝑛)) ⊆ ℕ0
1211a1i 11 . . . . 5 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (bits‘Σ𝑛𝐴 (2↑𝑛)) ⊆ ℕ0)
13 bitsfi 16072 . . . . . 6 𝑛𝐴 (2↑𝑛) ∈ ℕ0 → (bits‘Σ𝑛𝐴 (2↑𝑛)) ∈ Fin)
148, 13syl 17 . . . . 5 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (bits‘Σ𝑛𝐴 (2↑𝑛)) ∈ Fin)
15 elfpw 9051 . . . . 5 ((bits‘Σ𝑛𝐴 (2↑𝑛)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((bits‘Σ𝑛𝐴 (2↑𝑛)) ⊆ ℕ0 ∧ (bits‘Σ𝑛𝐴 (2↑𝑛)) ∈ Fin))
1612, 14, 15sylanbrc 582 . . . 4 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (bits‘Σ𝑛𝐴 (2↑𝑛)) ∈ (𝒫 ℕ0 ∩ Fin))
17 oveq2 7263 . . . . . . 7 (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚))
1817cbvsumv 15336 . . . . . 6 Σ𝑛𝑘 (2↑𝑛) = Σ𝑚𝑘 (2↑𝑚)
19 sumeq1 15328 . . . . . 6 (𝑘 = (bits‘Σ𝑛𝐴 (2↑𝑛)) → Σ𝑚𝑘 (2↑𝑚) = Σ𝑚 ∈ (bits‘Σ𝑛𝐴 (2↑𝑛))(2↑𝑚))
2018, 19eqtrid 2790 . . . . 5 (𝑘 = (bits‘Σ𝑛𝐴 (2↑𝑛)) → Σ𝑛𝑘 (2↑𝑛) = Σ𝑚 ∈ (bits‘Σ𝑛𝐴 (2↑𝑛))(2↑𝑚))
21 eqid 2738 . . . . 5 (𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛)) = (𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))
22 sumex 15327 . . . . 5 Σ𝑚 ∈ (bits‘Σ𝑛𝐴 (2↑𝑛))(2↑𝑚) ∈ V
2320, 21, 22fvmpt 6857 . . . 4 ((bits‘Σ𝑛𝐴 (2↑𝑛)) ∈ (𝒫 ℕ0 ∩ Fin) → ((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘(bits‘Σ𝑛𝐴 (2↑𝑛))) = Σ𝑚 ∈ (bits‘Σ𝑛𝐴 (2↑𝑛))(2↑𝑚))
2416, 23syl 17 . . 3 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → ((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘(bits‘Σ𝑛𝐴 (2↑𝑛))) = Σ𝑚 ∈ (bits‘Σ𝑛𝐴 (2↑𝑛))(2↑𝑚))
25 sumeq1 15328 . . . 4 (𝑘 = 𝐴 → Σ𝑛𝑘 (2↑𝑛) = Σ𝑛𝐴 (2↑𝑛))
26 sumex 15327 . . . 4 Σ𝑛𝐴 (2↑𝑛) ∈ V
2725, 21, 26fvmpt 6857 . . 3 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → ((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘𝐴) = Σ𝑛𝐴 (2↑𝑛))
2810, 24, 273eqtr4d 2788 . 2 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → ((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘(bits‘Σ𝑛𝐴 (2↑𝑛))) = ((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘𝐴))
2921ackbijnn 15468 . . . 4 (𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0
30 f1of1 6699 . . . 4 ((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0 → (𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛)):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0)
3129, 30mp1i 13 . . 3 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛)):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0)
32 id 22 . . 3 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → 𝐴 ∈ (𝒫 ℕ0 ∩ Fin))
33 f1fveq 7116 . . 3 (((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛)):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0 ∧ ((bits‘Σ𝑛𝐴 (2↑𝑛)) ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ∈ (𝒫 ℕ0 ∩ Fin))) → (((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘(bits‘Σ𝑛𝐴 (2↑𝑛))) = ((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘𝐴) ↔ (bits‘Σ𝑛𝐴 (2↑𝑛)) = 𝐴))
3431, 16, 32, 33syl12anc 833 . 2 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘(bits‘Σ𝑛𝐴 (2↑𝑛))) = ((𝑘 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑘 (2↑𝑛))‘𝐴) ↔ (bits‘Σ𝑛𝐴 (2↑𝑛)) = 𝐴))
3528, 34mpbid 231 1 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (bits‘Σ𝑛𝐴 (2↑𝑛)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cin 3882  wss 3883  𝒫 cpw 4530  cmpt 5153  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Fincfn 8691  2c2 11958  0cn0 12163  cexp 13710  Σcsu 15325  bitscbits 16054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-dvds 15892  df-bits 16057
This theorem is referenced by:  bitsf1ocnv  16079  2ebits  16082
  Copyright terms: Public domain W3C validator