MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadeq Structured version   Visualization version   GIF version

Theorem sadeq 16248
Description: Any element of a sequence sum only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadeq.a (𝜑𝐴 ⊆ ℕ0)
sadeq.b (𝜑𝐵 ⊆ ℕ0)
sadeq.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
sadeq (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))

Proof of Theorem sadeq
Dummy variables 𝑚 𝑐 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inass 4163 . . . . . . . 8 ((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁)) = (𝐴 ∩ ((0..^𝑁) ∩ (0..^𝑁)))
2 inidm 4162 . . . . . . . . 9 ((0..^𝑁) ∩ (0..^𝑁)) = (0..^𝑁)
32ineq2i 4153 . . . . . . . 8 (𝐴 ∩ ((0..^𝑁) ∩ (0..^𝑁))) = (𝐴 ∩ (0..^𝑁))
41, 3eqtri 2765 . . . . . . 7 ((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁)) = (𝐴 ∩ (0..^𝑁))
54fveq2i 6812 . . . . . 6 ((bits ↾ ℕ0)‘((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁)))
6 inass 4163 . . . . . . . 8 ((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)) = (𝐵 ∩ ((0..^𝑁) ∩ (0..^𝑁)))
72ineq2i 4153 . . . . . . . 8 (𝐵 ∩ ((0..^𝑁) ∩ (0..^𝑁))) = (𝐵 ∩ (0..^𝑁))
86, 7eqtri 2765 . . . . . . 7 ((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)) = (𝐵 ∩ (0..^𝑁))
98fveq2i 6812 . . . . . 6 ((bits ↾ ℕ0)‘((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))
105, 9oveq12i 7325 . . . . 5 (((bits ↾ ℕ0)‘((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)))) = (((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))))
1110oveq1i 7323 . . . 4 ((((bits ↾ ℕ0)‘((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁))
12 inss1 4172 . . . . . 6 (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴
13 sadeq.a . . . . . 6 (𝜑𝐴 ⊆ ℕ0)
1412, 13sstrid 3941 . . . . 5 (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
15 inss1 4172 . . . . . 6 (𝐵 ∩ (0..^𝑁)) ⊆ 𝐵
16 sadeq.b . . . . . 6 (𝜑𝐵 ⊆ ℕ0)
1715, 16sstrid 3941 . . . . 5 (𝜑 → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
18 eqid 2737 . . . . 5 seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (𝐴 ∩ (0..^𝑁)), 𝑚 ∈ (𝐵 ∩ (0..^𝑁)), ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (𝐴 ∩ (0..^𝑁)), 𝑚 ∈ (𝐵 ∩ (0..^𝑁)), ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
19 sadeq.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
20 eqid 2737 . . . . 5 (bits ↾ ℕ0) = (bits ↾ ℕ0)
2114, 17, 18, 19, 20sadadd3 16237 . . . 4 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)))) mod (2↑𝑁)))
22 eqid 2737 . . . . 5 seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
2313, 16, 22, 19, 20sadadd3 16237 . . . 4 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁)))
2411, 21, 233eqtr4a 2803 . . 3 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) mod (2↑𝑁)) = (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)))
25 inss1 4172 . . . . . . . 8 (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆ ((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁)))
26 sadcl 16238 . . . . . . . . 9 (((𝐴 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0) → ((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ⊆ ℕ0)
2714, 17, 26syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ⊆ ℕ0)
2825, 27sstrid 3941 . . . . . . 7 (𝜑 → (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆ ℕ0)
29 fzofi 13764 . . . . . . . . 9 (0..^𝑁) ∈ Fin
3029a1i 11 . . . . . . . 8 (𝜑 → (0..^𝑁) ∈ Fin)
31 inss2 4173 . . . . . . . 8 (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
32 ssfi 9013 . . . . . . . 8 (((0..^𝑁) ∈ Fin ∧ (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ Fin)
3330, 31, 32sylancl 586 . . . . . . 7 (𝜑 → (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ Fin)
34 elfpw 9189 . . . . . . 7 ((((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ Fin))
3528, 33, 34sylanbrc 583 . . . . . 6 (𝜑 → (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
36 bitsf1o 16221 . . . . . . . 8 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
37 f1ocnv 6763 . . . . . . . 8 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
38 f1of 6751 . . . . . . . 8 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
3936, 37, 38mp2b 10 . . . . . . 7 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0
4039ffvelcdmi 6997 . . . . . 6 ((((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℕ0)
4135, 40syl 17 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℕ0)
4241nn0red 12364 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℝ)
43 2rp 12805 . . . . . 6 2 ∈ ℝ+
4443a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ+)
4519nn0zd 12494 . . . . 5 (𝜑𝑁 ∈ ℤ)
4644, 45rpexpcld 14032 . . . 4 (𝜑 → (2↑𝑁) ∈ ℝ+)
4741nn0ge0d 12366 . . . 4 (𝜑 → 0 ≤ ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
4841fvresd 6829 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) = (bits‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))))
49 f1ocnvfv2 7186 . . . . . . . . 9 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
5036, 35, 49sylancr 587 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
5148, 50eqtr3d 2779 . . . . . . 7 (𝜑 → (bits‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
5251, 31eqsstrdi 3984 . . . . . 6 (𝜑 → (bits‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) ⊆ (0..^𝑁))
5341nn0zd 12494 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℤ)
54 bitsfzo 16211 . . . . . . 7 ((((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
5553, 19, 54syl2anc 584 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
5652, 55mpbird 256 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)))
57 elfzolt2 13466 . . . . 5 (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) < (2↑𝑁))
5856, 57syl 17 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) < (2↑𝑁))
59 modid 13686 . . . 4 (((((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) ∧ (0 ≤ ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∧ ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) < (2↑𝑁))) → (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
6042, 46, 47, 58, 59syl22anc 836 . . 3 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
61 inss1 4172 . . . . . . . 8 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (𝐴 sadd 𝐵)
62 sadcl 16238 . . . . . . . . 9 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0) → (𝐴 sadd 𝐵) ⊆ ℕ0)
6313, 16, 62syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴 sadd 𝐵) ⊆ ℕ0)
6461, 63sstrid 3941 . . . . . . 7 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0)
65 inss2 4173 . . . . . . . 8 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
66 ssfi 9013 . . . . . . . 8 (((0..^𝑁) ∈ Fin ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
6730, 65, 66sylancl 586 . . . . . . 7 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
68 elfpw 9189 . . . . . . 7 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin))
6964, 67, 68sylanbrc 583 . . . . . 6 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
7039ffvelcdmi 6997 . . . . . 6 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
7169, 70syl 17 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
7271nn0red 12364 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℝ)
7371nn0ge0d 12366 . . . 4 (𝜑 → 0 ≤ ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))))
7471fvresd 6829 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = (bits‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))))
75 f1ocnvfv2 7186 . . . . . . . . 9 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = ((𝐴 sadd 𝐵) ∩ (0..^𝑁)))
7636, 69, 75sylancr 587 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = ((𝐴 sadd 𝐵) ∩ (0..^𝑁)))
7774, 76eqtr3d 2779 . . . . . . 7 (𝜑 → (bits‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = ((𝐴 sadd 𝐵) ∩ (0..^𝑁)))
7877, 65eqsstrdi 3984 . . . . . 6 (𝜑 → (bits‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) ⊆ (0..^𝑁))
7971nn0zd 12494 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℤ)
80 bitsfzo 16211 . . . . . . 7 ((((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
8179, 19, 80syl2anc 584 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
8278, 81mpbird 256 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)))
83 elfzolt2 13466 . . . . 5 (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) < (2↑𝑁))
8482, 83syl 17 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) < (2↑𝑁))
85 modid 13686 . . . 4 (((((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) ∧ (0 ≤ ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∧ ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) < (2↑𝑁))) → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))))
8672, 46, 73, 84, 85syl22anc 836 . . 3 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))))
8724, 60, 863eqtr3rd 2786 . 2 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
88 f1of1 6750 . . . . 5 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0)
8936, 37, 88mp2b 10 . . . 4 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0
90 f1fveq 7172 . . . 4 (((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0 ∧ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ∧ (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))) → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ↔ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
9189, 90mpan 687 . . 3 ((((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ∧ (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ↔ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
9269, 35, 91syl2anc 584 . 2 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ↔ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
9387, 92mpbid 231 1 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  caddwcad 1606  wcel 2105  cin 3895  wss 3896  c0 4266  ifcif 4469  𝒫 cpw 4543   class class class wbr 5085  cmpt 5168  ccnv 5604  cres 5607  wf 6459  1-1wf1 6460  1-1-ontowf1o 6462  cfv 6463  (class class class)co 7313  cmpo 7315  1oc1o 8335  2oc2o 8336  Fincfn 8779  cr 10940  0cc0 10941  1c1 10942   + caddc 10944   < clt 11079  cle 11080  cmin 11275  2c2 12098  0cn0 12303  cz 12389  +crp 12800  ..^cfzo 13452   mod cmo 13659  seqcseq 13791  cexp 13852  bitscbits 16195   sadd csad 16196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-inf2 9467  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018  ax-pre-sup 11019
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-xor 1509  df-tru 1543  df-fal 1553  df-had 1594  df-cad 1607  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-int 4891  df-iun 4937  df-disj 5051  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-se 5561  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-isom 6472  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-1st 7874  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-1o 8342  df-2o 8343  df-oadd 8346  df-er 8544  df-map 8663  df-pm 8664  df-en 8780  df-dom 8781  df-sdom 8782  df-fin 8783  df-sup 9269  df-inf 9270  df-oi 9337  df-dju 9727  df-card 9765  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-div 11703  df-nn 12044  df-2 12106  df-3 12107  df-n0 12304  df-xnn0 12376  df-z 12390  df-uz 12653  df-rp 12801  df-fz 13310  df-fzo 13453  df-fl 13582  df-mod 13660  df-seq 13792  df-exp 13853  df-hash 14115  df-cj 14879  df-re 14880  df-im 14881  df-sqrt 15015  df-abs 15016  df-clim 15266  df-sum 15467  df-dvds 16033  df-bits 16198  df-sad 16227
This theorem is referenced by:  smuval2  16258  smueqlem  16266
  Copyright terms: Public domain W3C validator