MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadeq Structured version   Visualization version   GIF version

Theorem sadeq 16031
Description: Any element of a sequence sum only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadeq.a (𝜑𝐴 ⊆ ℕ0)
sadeq.b (𝜑𝐵 ⊆ ℕ0)
sadeq.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
sadeq (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))

Proof of Theorem sadeq
Dummy variables 𝑚 𝑐 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inass 4134 . . . . . . . 8 ((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁)) = (𝐴 ∩ ((0..^𝑁) ∩ (0..^𝑁)))
2 inidm 4133 . . . . . . . . 9 ((0..^𝑁) ∩ (0..^𝑁)) = (0..^𝑁)
32ineq2i 4124 . . . . . . . 8 (𝐴 ∩ ((0..^𝑁) ∩ (0..^𝑁))) = (𝐴 ∩ (0..^𝑁))
41, 3eqtri 2765 . . . . . . 7 ((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁)) = (𝐴 ∩ (0..^𝑁))
54fveq2i 6720 . . . . . 6 ((bits ↾ ℕ0)‘((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁)))
6 inass 4134 . . . . . . . 8 ((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)) = (𝐵 ∩ ((0..^𝑁) ∩ (0..^𝑁)))
72ineq2i 4124 . . . . . . . 8 (𝐵 ∩ ((0..^𝑁) ∩ (0..^𝑁))) = (𝐵 ∩ (0..^𝑁))
86, 7eqtri 2765 . . . . . . 7 ((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)) = (𝐵 ∩ (0..^𝑁))
98fveq2i 6720 . . . . . 6 ((bits ↾ ℕ0)‘((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))
105, 9oveq12i 7225 . . . . 5 (((bits ↾ ℕ0)‘((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)))) = (((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))))
1110oveq1i 7223 . . . 4 ((((bits ↾ ℕ0)‘((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁))
12 inss1 4143 . . . . . 6 (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴
13 sadeq.a . . . . . 6 (𝜑𝐴 ⊆ ℕ0)
1412, 13sstrid 3912 . . . . 5 (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
15 inss1 4143 . . . . . 6 (𝐵 ∩ (0..^𝑁)) ⊆ 𝐵
16 sadeq.b . . . . . 6 (𝜑𝐵 ⊆ ℕ0)
1715, 16sstrid 3912 . . . . 5 (𝜑 → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
18 eqid 2737 . . . . 5 seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (𝐴 ∩ (0..^𝑁)), 𝑚 ∈ (𝐵 ∩ (0..^𝑁)), ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (𝐴 ∩ (0..^𝑁)), 𝑚 ∈ (𝐵 ∩ (0..^𝑁)), ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
19 sadeq.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
20 eqid 2737 . . . . 5 (bits ↾ ℕ0) = (bits ↾ ℕ0)
2114, 17, 18, 19, 20sadadd3 16020 . . . 4 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)))) mod (2↑𝑁)))
22 eqid 2737 . . . . 5 seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
2313, 16, 22, 19, 20sadadd3 16020 . . . 4 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁)))
2411, 21, 233eqtr4a 2804 . . 3 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) mod (2↑𝑁)) = (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)))
25 inss1 4143 . . . . . . . 8 (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆ ((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁)))
26 sadcl 16021 . . . . . . . . 9 (((𝐴 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0) → ((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ⊆ ℕ0)
2714, 17, 26syl2anc 587 . . . . . . . 8 (𝜑 → ((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ⊆ ℕ0)
2825, 27sstrid 3912 . . . . . . 7 (𝜑 → (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆ ℕ0)
29 fzofi 13547 . . . . . . . . 9 (0..^𝑁) ∈ Fin
3029a1i 11 . . . . . . . 8 (𝜑 → (0..^𝑁) ∈ Fin)
31 inss2 4144 . . . . . . . 8 (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
32 ssfi 8851 . . . . . . . 8 (((0..^𝑁) ∈ Fin ∧ (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ Fin)
3330, 31, 32sylancl 589 . . . . . . 7 (𝜑 → (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ Fin)
34 elfpw 8978 . . . . . . 7 ((((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ Fin))
3528, 33, 34sylanbrc 586 . . . . . 6 (𝜑 → (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
36 bitsf1o 16004 . . . . . . . 8 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
37 f1ocnv 6673 . . . . . . . 8 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
38 f1of 6661 . . . . . . . 8 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
3936, 37, 38mp2b 10 . . . . . . 7 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0
4039ffvelrni 6903 . . . . . 6 ((((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℕ0)
4135, 40syl 17 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℕ0)
4241nn0red 12151 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℝ)
43 2rp 12591 . . . . . 6 2 ∈ ℝ+
4443a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ+)
4519nn0zd 12280 . . . . 5 (𝜑𝑁 ∈ ℤ)
4644, 45rpexpcld 13814 . . . 4 (𝜑 → (2↑𝑁) ∈ ℝ+)
4741nn0ge0d 12153 . . . 4 (𝜑 → 0 ≤ ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
4841fvresd 6737 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) = (bits‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))))
49 f1ocnvfv2 7088 . . . . . . . . 9 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
5036, 35, 49sylancr 590 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
5148, 50eqtr3d 2779 . . . . . . 7 (𝜑 → (bits‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
5251, 31eqsstrdi 3955 . . . . . 6 (𝜑 → (bits‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) ⊆ (0..^𝑁))
5341nn0zd 12280 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℤ)
54 bitsfzo 15994 . . . . . . 7 ((((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
5553, 19, 54syl2anc 587 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
5652, 55mpbird 260 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)))
57 elfzolt2 13252 . . . . 5 (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) < (2↑𝑁))
5856, 57syl 17 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) < (2↑𝑁))
59 modid 13469 . . . 4 (((((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) ∧ (0 ≤ ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∧ ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) < (2↑𝑁))) → (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
6042, 46, 47, 58, 59syl22anc 839 . . 3 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
61 inss1 4143 . . . . . . . 8 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (𝐴 sadd 𝐵)
62 sadcl 16021 . . . . . . . . 9 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0) → (𝐴 sadd 𝐵) ⊆ ℕ0)
6313, 16, 62syl2anc 587 . . . . . . . 8 (𝜑 → (𝐴 sadd 𝐵) ⊆ ℕ0)
6461, 63sstrid 3912 . . . . . . 7 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0)
65 inss2 4144 . . . . . . . 8 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
66 ssfi 8851 . . . . . . . 8 (((0..^𝑁) ∈ Fin ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
6730, 65, 66sylancl 589 . . . . . . 7 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
68 elfpw 8978 . . . . . . 7 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin))
6964, 67, 68sylanbrc 586 . . . . . 6 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
7039ffvelrni 6903 . . . . . 6 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
7169, 70syl 17 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
7271nn0red 12151 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℝ)
7371nn0ge0d 12153 . . . 4 (𝜑 → 0 ≤ ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))))
7471fvresd 6737 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = (bits‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))))
75 f1ocnvfv2 7088 . . . . . . . . 9 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = ((𝐴 sadd 𝐵) ∩ (0..^𝑁)))
7636, 69, 75sylancr 590 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = ((𝐴 sadd 𝐵) ∩ (0..^𝑁)))
7774, 76eqtr3d 2779 . . . . . . 7 (𝜑 → (bits‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = ((𝐴 sadd 𝐵) ∩ (0..^𝑁)))
7877, 65eqsstrdi 3955 . . . . . 6 (𝜑 → (bits‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) ⊆ (0..^𝑁))
7971nn0zd 12280 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℤ)
80 bitsfzo 15994 . . . . . . 7 ((((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
8179, 19, 80syl2anc 587 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
8278, 81mpbird 260 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)))
83 elfzolt2 13252 . . . . 5 (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) < (2↑𝑁))
8482, 83syl 17 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) < (2↑𝑁))
85 modid 13469 . . . 4 (((((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) ∧ (0 ≤ ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∧ ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) < (2↑𝑁))) → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))))
8672, 46, 73, 84, 85syl22anc 839 . . 3 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))))
8724, 60, 863eqtr3rd 2786 . 2 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
88 f1of1 6660 . . . . 5 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0)
8936, 37, 88mp2b 10 . . . 4 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0
90 f1fveq 7074 . . . 4 (((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0 ∧ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ∧ (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))) → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ↔ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
9189, 90mpan 690 . . 3 ((((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ∧ (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ↔ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
9269, 35, 91syl2anc 587 . 2 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ↔ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
9387, 92mpbid 235 1 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  caddwcad 1613  wcel 2110  cin 3865  wss 3866  c0 4237  ifcif 4439  𝒫 cpw 4513   class class class wbr 5053  cmpt 5135  ccnv 5550  cres 5553  wf 6376  1-1wf1 6377  1-1-ontowf1o 6379  cfv 6380  (class class class)co 7213  cmpo 7215  1oc1o 8195  2oc2o 8196  Fincfn 8626  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   < clt 10867  cle 10868  cmin 11062  2c2 11885  0cn0 12090  cz 12176  +crp 12586  ..^cfzo 13238   mod cmo 13442  seqcseq 13574  cexp 13635  bitscbits 15978   sadd csad 15979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-xor 1508  df-tru 1546  df-fal 1556  df-had 1600  df-cad 1614  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-disj 5019  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-oi 9126  df-dju 9517  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-xnn0 12163  df-z 12177  df-uz 12439  df-rp 12587  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-sum 15250  df-dvds 15816  df-bits 15981  df-sad 16010
This theorem is referenced by:  smuval2  16041  smueqlem  16049
  Copyright terms: Public domain W3C validator