MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadeq Structured version   Visualization version   GIF version

Theorem sadeq 16449
Description: Any element of a sequence sum only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadeq.a (𝜑𝐴 ⊆ ℕ0)
sadeq.b (𝜑𝐵 ⊆ ℕ0)
sadeq.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
sadeq (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))

Proof of Theorem sadeq
Dummy variables 𝑚 𝑐 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inass 4194 . . . . . . . 8 ((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁)) = (𝐴 ∩ ((0..^𝑁) ∩ (0..^𝑁)))
2 inidm 4193 . . . . . . . . 9 ((0..^𝑁) ∩ (0..^𝑁)) = (0..^𝑁)
32ineq2i 4183 . . . . . . . 8 (𝐴 ∩ ((0..^𝑁) ∩ (0..^𝑁))) = (𝐴 ∩ (0..^𝑁))
41, 3eqtri 2753 . . . . . . 7 ((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁)) = (𝐴 ∩ (0..^𝑁))
54fveq2i 6864 . . . . . 6 ((bits ↾ ℕ0)‘((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁)))
6 inass 4194 . . . . . . . 8 ((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)) = (𝐵 ∩ ((0..^𝑁) ∩ (0..^𝑁)))
72ineq2i 4183 . . . . . . . 8 (𝐵 ∩ ((0..^𝑁) ∩ (0..^𝑁))) = (𝐵 ∩ (0..^𝑁))
86, 7eqtri 2753 . . . . . . 7 ((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)) = (𝐵 ∩ (0..^𝑁))
98fveq2i 6864 . . . . . 6 ((bits ↾ ℕ0)‘((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))
105, 9oveq12i 7402 . . . . 5 (((bits ↾ ℕ0)‘((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)))) = (((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))))
1110oveq1i 7400 . . . 4 ((((bits ↾ ℕ0)‘((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁))
12 inss1 4203 . . . . . 6 (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴
13 sadeq.a . . . . . 6 (𝜑𝐴 ⊆ ℕ0)
1412, 13sstrid 3961 . . . . 5 (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
15 inss1 4203 . . . . . 6 (𝐵 ∩ (0..^𝑁)) ⊆ 𝐵
16 sadeq.b . . . . . 6 (𝜑𝐵 ⊆ ℕ0)
1715, 16sstrid 3961 . . . . 5 (𝜑 → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
18 eqid 2730 . . . . 5 seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (𝐴 ∩ (0..^𝑁)), 𝑚 ∈ (𝐵 ∩ (0..^𝑁)), ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (𝐴 ∩ (0..^𝑁)), 𝑚 ∈ (𝐵 ∩ (0..^𝑁)), ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
19 sadeq.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
20 eqid 2730 . . . . 5 (bits ↾ ℕ0) = (bits ↾ ℕ0)
2114, 17, 18, 19, 20sadadd3 16438 . . . 4 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)))) mod (2↑𝑁)))
22 eqid 2730 . . . . 5 seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
2313, 16, 22, 19, 20sadadd3 16438 . . . 4 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁)))
2411, 21, 233eqtr4a 2791 . . 3 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) mod (2↑𝑁)) = (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)))
25 inss1 4203 . . . . . . . 8 (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆ ((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁)))
26 sadcl 16439 . . . . . . . . 9 (((𝐴 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0) → ((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ⊆ ℕ0)
2714, 17, 26syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ⊆ ℕ0)
2825, 27sstrid 3961 . . . . . . 7 (𝜑 → (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆ ℕ0)
29 fzofi 13946 . . . . . . . . 9 (0..^𝑁) ∈ Fin
3029a1i 11 . . . . . . . 8 (𝜑 → (0..^𝑁) ∈ Fin)
31 inss2 4204 . . . . . . . 8 (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
32 ssfi 9143 . . . . . . . 8 (((0..^𝑁) ∈ Fin ∧ (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ Fin)
3330, 31, 32sylancl 586 . . . . . . 7 (𝜑 → (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ Fin)
34 elfpw 9312 . . . . . . 7 ((((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ Fin))
3528, 33, 34sylanbrc 583 . . . . . 6 (𝜑 → (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
36 bitsf1o 16422 . . . . . . . 8 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
37 f1ocnv 6815 . . . . . . . 8 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
38 f1of 6803 . . . . . . . 8 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
3936, 37, 38mp2b 10 . . . . . . 7 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0
4039ffvelcdmi 7058 . . . . . 6 ((((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℕ0)
4135, 40syl 17 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℕ0)
4241nn0red 12511 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℝ)
43 2rp 12963 . . . . . 6 2 ∈ ℝ+
4443a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ+)
4519nn0zd 12562 . . . . 5 (𝜑𝑁 ∈ ℤ)
4644, 45rpexpcld 14219 . . . 4 (𝜑 → (2↑𝑁) ∈ ℝ+)
4741nn0ge0d 12513 . . . 4 (𝜑 → 0 ≤ ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
4841fvresd 6881 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) = (bits‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))))
49 f1ocnvfv2 7255 . . . . . . . . 9 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
5036, 35, 49sylancr 587 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
5148, 50eqtr3d 2767 . . . . . . 7 (𝜑 → (bits‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
5251, 31eqsstrdi 3994 . . . . . 6 (𝜑 → (bits‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) ⊆ (0..^𝑁))
5341nn0zd 12562 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℤ)
54 bitsfzo 16412 . . . . . . 7 ((((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
5553, 19, 54syl2anc 584 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
5652, 55mpbird 257 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)))
57 elfzolt2 13636 . . . . 5 (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) < (2↑𝑁))
5856, 57syl 17 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) < (2↑𝑁))
59 modid 13865 . . . 4 (((((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) ∧ (0 ≤ ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∧ ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) < (2↑𝑁))) → (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
6042, 46, 47, 58, 59syl22anc 838 . . 3 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
61 inss1 4203 . . . . . . . 8 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (𝐴 sadd 𝐵)
62 sadcl 16439 . . . . . . . . 9 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0) → (𝐴 sadd 𝐵) ⊆ ℕ0)
6313, 16, 62syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴 sadd 𝐵) ⊆ ℕ0)
6461, 63sstrid 3961 . . . . . . 7 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0)
65 inss2 4204 . . . . . . . 8 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
66 ssfi 9143 . . . . . . . 8 (((0..^𝑁) ∈ Fin ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
6730, 65, 66sylancl 586 . . . . . . 7 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
68 elfpw 9312 . . . . . . 7 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin))
6964, 67, 68sylanbrc 583 . . . . . 6 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
7039ffvelcdmi 7058 . . . . . 6 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
7169, 70syl 17 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
7271nn0red 12511 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℝ)
7371nn0ge0d 12513 . . . 4 (𝜑 → 0 ≤ ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))))
7471fvresd 6881 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = (bits‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))))
75 f1ocnvfv2 7255 . . . . . . . . 9 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = ((𝐴 sadd 𝐵) ∩ (0..^𝑁)))
7636, 69, 75sylancr 587 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = ((𝐴 sadd 𝐵) ∩ (0..^𝑁)))
7774, 76eqtr3d 2767 . . . . . . 7 (𝜑 → (bits‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = ((𝐴 sadd 𝐵) ∩ (0..^𝑁)))
7877, 65eqsstrdi 3994 . . . . . 6 (𝜑 → (bits‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) ⊆ (0..^𝑁))
7971nn0zd 12562 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℤ)
80 bitsfzo 16412 . . . . . . 7 ((((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
8179, 19, 80syl2anc 584 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
8278, 81mpbird 257 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)))
83 elfzolt2 13636 . . . . 5 (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) < (2↑𝑁))
8482, 83syl 17 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) < (2↑𝑁))
85 modid 13865 . . . 4 (((((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) ∧ (0 ≤ ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∧ ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) < (2↑𝑁))) → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))))
8672, 46, 73, 84, 85syl22anc 838 . . 3 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))))
8724, 60, 863eqtr3rd 2774 . 2 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
88 f1of1 6802 . . . . 5 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0)
8936, 37, 88mp2b 10 . . . 4 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0
90 f1fveq 7240 . . . 4 (((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0 ∧ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ∧ (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))) → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ↔ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
9189, 90mpan 690 . . 3 ((((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ∧ (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ↔ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
9269, 35, 91syl2anc 584 . 2 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ↔ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
9387, 92mpbid 232 1 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  caddwcad 1606  wcel 2109  cin 3916  wss 3917  c0 4299  ifcif 4491  𝒫 cpw 4566   class class class wbr 5110  cmpt 5191  ccnv 5640  cres 5643  wf 6510  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  cmpo 7392  1oc1o 8430  2oc2o 8431  Fincfn 8921  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cmin 11412  2c2 12248  0cn0 12449  cz 12536  +crp 12958  ..^cfzo 13622   mod cmo 13838  seqcseq 13973  cexp 14033  bitscbits 16396   sadd csad 16397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-had 1594  df-cad 1607  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-dvds 16230  df-bits 16399  df-sad 16428
This theorem is referenced by:  smuval2  16459  smueqlem  16467
  Copyright terms: Public domain W3C validator