| Step | Hyp | Ref
| Expression |
| 1 | | inass 4203 |
. . . . . . . 8
⊢ ((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁)) = (𝐴 ∩ ((0..^𝑁) ∩ (0..^𝑁))) |
| 2 | | inidm 4202 |
. . . . . . . . 9
⊢
((0..^𝑁) ∩
(0..^𝑁)) = (0..^𝑁) |
| 3 | 2 | ineq2i 4192 |
. . . . . . . 8
⊢ (𝐴 ∩ ((0..^𝑁) ∩ (0..^𝑁))) = (𝐴 ∩ (0..^𝑁)) |
| 4 | 1, 3 | eqtri 2758 |
. . . . . . 7
⊢ ((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁)) = (𝐴 ∩ (0..^𝑁)) |
| 5 | 4 | fveq2i 6879 |
. . . . . 6
⊢ (◡(bits ↾
ℕ0)‘((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁))) = (◡(bits ↾
ℕ0)‘(𝐴 ∩ (0..^𝑁))) |
| 6 | | inass 4203 |
. . . . . . . 8
⊢ ((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)) = (𝐵 ∩ ((0..^𝑁) ∩ (0..^𝑁))) |
| 7 | 2 | ineq2i 4192 |
. . . . . . . 8
⊢ (𝐵 ∩ ((0..^𝑁) ∩ (0..^𝑁))) = (𝐵 ∩ (0..^𝑁)) |
| 8 | 6, 7 | eqtri 2758 |
. . . . . . 7
⊢ ((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)) = (𝐵 ∩ (0..^𝑁)) |
| 9 | 8 | fveq2i 6879 |
. . . . . 6
⊢ (◡(bits ↾
ℕ0)‘((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁))) = (◡(bits ↾
ℕ0)‘(𝐵 ∩ (0..^𝑁))) |
| 10 | 5, 9 | oveq12i 7417 |
. . . . 5
⊢ ((◡(bits ↾
ℕ0)‘((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁))) + (◡(bits ↾
ℕ0)‘((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)))) = ((◡(bits ↾
ℕ0)‘(𝐴 ∩ (0..^𝑁))) + (◡(bits ↾
ℕ0)‘(𝐵 ∩ (0..^𝑁)))) |
| 11 | 10 | oveq1i 7415 |
. . . 4
⊢ (((◡(bits ↾
ℕ0)‘((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁))) + (◡(bits ↾
ℕ0)‘((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)))) mod (2↑𝑁)) = (((◡(bits ↾
ℕ0)‘(𝐴 ∩ (0..^𝑁))) + (◡(bits ↾
ℕ0)‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁)) |
| 12 | | inss1 4212 |
. . . . . 6
⊢ (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴 |
| 13 | | sadeq.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆
ℕ0) |
| 14 | 12, 13 | sstrid 3970 |
. . . . 5
⊢ (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆
ℕ0) |
| 15 | | inss1 4212 |
. . . . . 6
⊢ (𝐵 ∩ (0..^𝑁)) ⊆ 𝐵 |
| 16 | | sadeq.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ⊆
ℕ0) |
| 17 | 15, 16 | sstrid 3970 |
. . . . 5
⊢ (𝜑 → (𝐵 ∩ (0..^𝑁)) ⊆
ℕ0) |
| 18 | | eqid 2735 |
. . . . 5
⊢
seq0((𝑐 ∈
2o, 𝑚 ∈
ℕ0 ↦ if(cadd(𝑚 ∈ (𝐴 ∩ (0..^𝑁)), 𝑚 ∈ (𝐵 ∩ (0..^𝑁)), ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 − 1)))) =
seq0((𝑐 ∈
2o, 𝑚 ∈
ℕ0 ↦ if(cadd(𝑚 ∈ (𝐴 ∩ (0..^𝑁)), 𝑚 ∈ (𝐵 ∩ (0..^𝑁)), ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1)))) |
| 19 | | sadeq.n |
. . . . 5
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 20 | | eqid 2735 |
. . . . 5
⊢ ◡(bits ↾ ℕ0) = ◡(bits ↾
ℕ0) |
| 21 | 14, 17, 18, 19, 20 | sadadd3 16480 |
. . . 4
⊢ (𝜑 → ((◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) mod (2↑𝑁)) = (((◡(bits ↾
ℕ0)‘((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁))) + (◡(bits ↾
ℕ0)‘((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)))) mod (2↑𝑁))) |
| 22 | | eqid 2735 |
. . . . 5
⊢
seq0((𝑐 ∈
2o, 𝑚 ∈
ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 − 1)))) =
seq0((𝑐 ∈
2o, 𝑚 ∈
ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1)))) |
| 23 | 13, 16, 22, 19, 20 | sadadd3 16480 |
. . . 4
⊢ (𝜑 → ((◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = (((◡(bits ↾
ℕ0)‘(𝐴 ∩ (0..^𝑁))) + (◡(bits ↾
ℕ0)‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁))) |
| 24 | 11, 21, 23 | 3eqtr4a 2796 |
. . 3
⊢ (𝜑 → ((◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁))) |
| 25 | | inss1 4212 |
. . . . . . . 8
⊢ (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆ ((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) |
| 26 | | sadcl 16481 |
. . . . . . . . 9
⊢ (((𝐴 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0) →
((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ⊆
ℕ0) |
| 27 | 14, 17, 26 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ⊆
ℕ0) |
| 28 | 25, 27 | sstrid 3970 |
. . . . . . 7
⊢ (𝜑 → (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆
ℕ0) |
| 29 | | fzofi 13992 |
. . . . . . . . 9
⊢
(0..^𝑁) ∈
Fin |
| 30 | 29 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (0..^𝑁) ∈ Fin) |
| 31 | | inss2 4213 |
. . . . . . . 8
⊢ (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆ (0..^𝑁) |
| 32 | | ssfi 9187 |
. . . . . . . 8
⊢
(((0..^𝑁) ∈ Fin
∧ (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ Fin) |
| 33 | 30, 31, 32 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ Fin) |
| 34 | | elfpw 9366 |
. . . . . . 7
⊢ ((((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin) ↔ ((((𝐴
∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆ ℕ0 ∧
(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ Fin)) |
| 35 | 28, 33, 34 | sylanbrc 583 |
. . . . . 6
⊢ (𝜑 → (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin)) |
| 36 | | bitsf1o 16464 |
. . . . . . . 8
⊢ (bits
↾ ℕ0):ℕ0–1-1-onto→(𝒫 ℕ0 ∩
Fin) |
| 37 | | f1ocnv 6830 |
. . . . . . . 8
⊢ ((bits
↾ ℕ0):ℕ0–1-1-onto→(𝒫 ℕ0 ∩ Fin)
→ ◡(bits ↾
ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0) |
| 38 | | f1of 6818 |
. . . . . . . 8
⊢ (◡(bits ↾
ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0 → ◡(bits ↾
ℕ0):(𝒫 ℕ0 ∩
Fin)⟶ℕ0) |
| 39 | 36, 37, 38 | mp2b 10 |
. . . . . . 7
⊢ ◡(bits ↾
ℕ0):(𝒫 ℕ0 ∩
Fin)⟶ℕ0 |
| 40 | 39 | ffvelcdmi 7073 |
. . . . . 6
⊢ ((((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin) → (◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈
ℕ0) |
| 41 | 35, 40 | syl 17 |
. . . . 5
⊢ (𝜑 → (◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈
ℕ0) |
| 42 | 41 | nn0red 12563 |
. . . 4
⊢ (𝜑 → (◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℝ) |
| 43 | | 2rp 13013 |
. . . . . 6
⊢ 2 ∈
ℝ+ |
| 44 | 43 | a1i 11 |
. . . . 5
⊢ (𝜑 → 2 ∈
ℝ+) |
| 45 | 19 | nn0zd 12614 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 46 | 44, 45 | rpexpcld 14265 |
. . . 4
⊢ (𝜑 → (2↑𝑁) ∈
ℝ+) |
| 47 | 41 | nn0ge0d 12565 |
. . . 4
⊢ (𝜑 → 0 ≤ (◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) |
| 48 | 41 | fvresd 6896 |
. . . . . . . 8
⊢ (𝜑 → ((bits ↾
ℕ0)‘(◡(bits
↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) = (bits‘(◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))) |
| 49 | | f1ocnvfv2 7270 |
. . . . . . . . 9
⊢ (((bits
↾ ℕ0):ℕ0–1-1-onto→(𝒫 ℕ0 ∩ Fin)
∧ (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin)) → ((bits ↾ ℕ0)‘(◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) |
| 50 | 36, 35, 49 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → ((bits ↾
ℕ0)‘(◡(bits
↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) |
| 51 | 48, 50 | eqtr3d 2772 |
. . . . . . 7
⊢ (𝜑 → (bits‘(◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) |
| 52 | 51, 31 | eqsstrdi 4003 |
. . . . . 6
⊢ (𝜑 → (bits‘(◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)) |
| 53 | 41 | nn0zd 12614 |
. . . . . . 7
⊢ (𝜑 → (◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℤ) |
| 54 | | bitsfzo 16454 |
. . . . . . 7
⊢ (((◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘(◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) ⊆ (0..^𝑁))) |
| 55 | 53, 19, 54 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘(◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) ⊆ (0..^𝑁))) |
| 56 | 52, 55 | mpbird 257 |
. . . . 5
⊢ (𝜑 → (◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁))) |
| 57 | | elfzolt2 13685 |
. . . . 5
⊢ ((◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → (◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) < (2↑𝑁)) |
| 58 | 56, 57 | syl 17 |
. . . 4
⊢ (𝜑 → (◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) < (2↑𝑁)) |
| 59 | | modid 13913 |
. . . 4
⊢ ((((◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+)
∧ (0 ≤ (◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∧ (◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) < (2↑𝑁))) → ((◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) mod (2↑𝑁)) = (◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) |
| 60 | 42, 46, 47, 58, 59 | syl22anc 838 |
. . 3
⊢ (𝜑 → ((◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) mod (2↑𝑁)) = (◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) |
| 61 | | inss1 4212 |
. . . . . . . 8
⊢ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (𝐴 sadd 𝐵) |
| 62 | | sadcl 16481 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0) → (𝐴 sadd 𝐵) ⊆
ℕ0) |
| 63 | 13, 16, 62 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 sadd 𝐵) ⊆
ℕ0) |
| 64 | 61, 63 | sstrid 3970 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆
ℕ0) |
| 65 | | inss2 4213 |
. . . . . . . 8
⊢ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁) |
| 66 | | ssfi 9187 |
. . . . . . . 8
⊢
(((0..^𝑁) ∈ Fin
∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin) |
| 67 | 30, 65, 66 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin) |
| 68 | | elfpw 9366 |
. . . . . . 7
⊢ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin) ↔ (((𝐴 sadd
𝐵) ∩ (0..^𝑁)) ⊆ ℕ0
∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)) |
| 69 | 64, 67, 68 | sylanbrc 583 |
. . . . . 6
⊢ (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin)) |
| 70 | 39 | ffvelcdmi 7073 |
. . . . . 6
⊢ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin) → (◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈
ℕ0) |
| 71 | 69, 70 | syl 17 |
. . . . 5
⊢ (𝜑 → (◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈
ℕ0) |
| 72 | 71 | nn0red 12563 |
. . . 4
⊢ (𝜑 → (◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℝ) |
| 73 | 71 | nn0ge0d 12565 |
. . . 4
⊢ (𝜑 → 0 ≤ (◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) |
| 74 | 71 | fvresd 6896 |
. . . . . . . 8
⊢ (𝜑 → ((bits ↾
ℕ0)‘(◡(bits
↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = (bits‘(◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))))) |
| 75 | | f1ocnvfv2 7270 |
. . . . . . . . 9
⊢ (((bits
↾ ℕ0):ℕ0–1-1-onto→(𝒫 ℕ0 ∩ Fin)
∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin)) → ((bits ↾ ℕ0)‘(◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = ((𝐴 sadd 𝐵) ∩ (0..^𝑁))) |
| 76 | 36, 69, 75 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → ((bits ↾
ℕ0)‘(◡(bits
↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = ((𝐴 sadd 𝐵) ∩ (0..^𝑁))) |
| 77 | 74, 76 | eqtr3d 2772 |
. . . . . . 7
⊢ (𝜑 → (bits‘(◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = ((𝐴 sadd 𝐵) ∩ (0..^𝑁))) |
| 78 | 77, 65 | eqsstrdi 4003 |
. . . . . 6
⊢ (𝜑 → (bits‘(◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)) |
| 79 | 71 | nn0zd 12614 |
. . . . . . 7
⊢ (𝜑 → (◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℤ) |
| 80 | | bitsfzo 16454 |
. . . . . . 7
⊢ (((◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘(◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) ⊆ (0..^𝑁))) |
| 81 | 79, 19, 80 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘(◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) ⊆ (0..^𝑁))) |
| 82 | 78, 81 | mpbird 257 |
. . . . 5
⊢ (𝜑 → (◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁))) |
| 83 | | elfzolt2 13685 |
. . . . 5
⊢ ((◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → (◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) < (2↑𝑁)) |
| 84 | 82, 83 | syl 17 |
. . . 4
⊢ (𝜑 → (◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) < (2↑𝑁)) |
| 85 | | modid 13913 |
. . . 4
⊢ ((((◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+)
∧ (0 ≤ (◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∧ (◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) < (2↑𝑁))) → ((◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = (◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) |
| 86 | 72, 46, 73, 84, 85 | syl22anc 838 |
. . 3
⊢ (𝜑 → ((◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = (◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) |
| 87 | 24, 60, 86 | 3eqtr3rd 2779 |
. 2
⊢ (𝜑 → (◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) = (◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) |
| 88 | | f1of1 6817 |
. . . . 5
⊢ (◡(bits ↾
ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0 → ◡(bits ↾
ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0) |
| 89 | 36, 37, 88 | mp2b 10 |
. . . 4
⊢ ◡(bits ↾
ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0 |
| 90 | | f1fveq 7255 |
. . . 4
⊢ ((◡(bits ↾
ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0 ∧ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin) ∧ (((𝐴 ∩
(0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin))) → ((◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) = (◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ↔ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) |
| 91 | 89, 90 | mpan 690 |
. . 3
⊢ ((((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin) ∧ (((𝐴 ∩
(0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin)) → ((◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) = (◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ↔ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) |
| 92 | 69, 35, 91 | syl2anc 584 |
. 2
⊢ (𝜑 → ((◡(bits ↾
ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) = (◡(bits ↾
ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ↔ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) |
| 93 | 87, 92 | mpbid 232 |
1
⊢ (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) |