MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadasslem Structured version   Visualization version   GIF version

Theorem sadasslem 16504
Description: Lemma for sadass 16505. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadasslem.1 (𝜑𝐴 ⊆ ℕ0)
sadasslem.2 (𝜑𝐵 ⊆ ℕ0)
sadasslem.3 (𝜑𝐶 ⊆ ℕ0)
sadasslem.4 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
sadasslem (𝜑 → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))

Proof of Theorem sadasslem
Dummy variables 𝑐 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4245 . . . . . . . . . . 11 (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴
2 sadasslem.1 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℕ0)
31, 2sstrid 4007 . . . . . . . . . 10 (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
4 fzofi 14012 . . . . . . . . . . . 12 (0..^𝑁) ∈ Fin
54a1i 11 . . . . . . . . . . 11 (𝜑 → (0..^𝑁) ∈ Fin)
6 inss2 4246 . . . . . . . . . . 11 (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
7 ssfi 9212 . . . . . . . . . . 11 (((0..^𝑁) ∈ Fin ∧ (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
85, 6, 7sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
9 elfpw 9392 . . . . . . . . . 10 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐴 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐴 ∩ (0..^𝑁)) ∈ Fin))
103, 8, 9sylanbrc 583 . . . . . . . . 9 (𝜑 → (𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
11 bitsf1o 16479 . . . . . . . . . . 11 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
12 f1ocnv 6861 . . . . . . . . . . 11 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
13 f1of 6849 . . . . . . . . . . 11 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
1411, 12, 13mp2b 10 . . . . . . . . . 10 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0
1514ffvelcdmi 7103 . . . . . . . . 9 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) ∈ ℕ0)
1610, 15syl 17 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) ∈ ℕ0)
1716nn0cnd 12587 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) ∈ ℂ)
18 inss1 4245 . . . . . . . . . . 11 (𝐵 ∩ (0..^𝑁)) ⊆ 𝐵
19 sadasslem.2 . . . . . . . . . . 11 (𝜑𝐵 ⊆ ℕ0)
2018, 19sstrid 4007 . . . . . . . . . 10 (𝜑 → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
21 inss2 4246 . . . . . . . . . . 11 (𝐵 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
22 ssfi 9212 . . . . . . . . . . 11 (((0..^𝑁) ∈ Fin ∧ (𝐵 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐵 ∩ (0..^𝑁)) ∈ Fin)
235, 21, 22sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐵 ∩ (0..^𝑁)) ∈ Fin)
24 elfpw 9392 . . . . . . . . . 10 ((𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐵 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐵 ∩ (0..^𝑁)) ∈ Fin))
2520, 23, 24sylanbrc 583 . . . . . . . . 9 (𝜑 → (𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
2614ffvelcdmi 7103 . . . . . . . . 9 ((𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) ∈ ℕ0)
2725, 26syl 17 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) ∈ ℕ0)
2827nn0cnd 12587 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) ∈ ℂ)
29 inss1 4245 . . . . . . . . . . 11 (𝐶 ∩ (0..^𝑁)) ⊆ 𝐶
30 sadasslem.3 . . . . . . . . . . 11 (𝜑𝐶 ⊆ ℕ0)
3129, 30sstrid 4007 . . . . . . . . . 10 (𝜑 → (𝐶 ∩ (0..^𝑁)) ⊆ ℕ0)
32 inss2 4246 . . . . . . . . . . 11 (𝐶 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
33 ssfi 9212 . . . . . . . . . . 11 (((0..^𝑁) ∈ Fin ∧ (𝐶 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐶 ∩ (0..^𝑁)) ∈ Fin)
345, 32, 33sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐶 ∩ (0..^𝑁)) ∈ Fin)
35 elfpw 9392 . . . . . . . . . 10 ((𝐶 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐶 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐶 ∩ (0..^𝑁)) ∈ Fin))
3631, 34, 35sylanbrc 583 . . . . . . . . 9 (𝜑 → (𝐶 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
3714ffvelcdmi 7103 . . . . . . . . 9 ((𝐶 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))) ∈ ℕ0)
3836, 37syl 17 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))) ∈ ℕ0)
3938nn0cnd 12587 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))) ∈ ℂ)
4017, 28, 39addassd 11281 . . . . . 6 (𝜑 → ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) = (((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + (((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))))))
4140oveq1d 7446 . . . . 5 (𝜑 → (((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + (((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))))) mod (2↑𝑁)))
42 inss1 4245 . . . . . . . . . 10 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (𝐴 sadd 𝐵)
43 sadcl 16496 . . . . . . . . . . 11 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0) → (𝐴 sadd 𝐵) ⊆ ℕ0)
442, 19, 43syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐴 sadd 𝐵) ⊆ ℕ0)
4542, 44sstrid 4007 . . . . . . . . 9 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0)
46 inss2 4246 . . . . . . . . . 10 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
47 ssfi 9212 . . . . . . . . . 10 (((0..^𝑁) ∈ Fin ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
485, 46, 47sylancl 586 . . . . . . . . 9 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
49 elfpw 9392 . . . . . . . . 9 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin))
5045, 48, 49sylanbrc 583 . . . . . . . 8 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
5114ffvelcdmi 7103 . . . . . . . 8 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
5250, 51syl 17 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
5352nn0red 12586 . . . . . 6 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℝ)
5416nn0red 12586 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) ∈ ℝ)
5527nn0red 12586 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) ∈ ℝ)
5654, 55readdcld 11288 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) ∈ ℝ)
5738nn0red 12586 . . . . . 6 (𝜑 → ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))) ∈ ℝ)
58 2rp 13037 . . . . . . . 8 2 ∈ ℝ+
5958a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ+)
60 sadasslem.4 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
6160nn0zd 12637 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
6259, 61rpexpcld 14283 . . . . . 6 (𝜑 → (2↑𝑁) ∈ ℝ+)
63 eqid 2735 . . . . . . 7 seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
64 eqid 2735 . . . . . . 7 (bits ↾ ℕ0) = (bits ↾ ℕ0)
652, 19, 63, 60, 64sadadd3 16495 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁)))
66 eqidd 2736 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))) mod (2↑𝑁)) = (((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))) mod (2↑𝑁)))
6753, 56, 57, 57, 62, 65, 66modadd12d 13965 . . . . 5 (𝜑 → ((((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) mod (2↑𝑁)) = (((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) mod (2↑𝑁)))
68 inss1 4245 . . . . . . . . . 10 ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ⊆ (𝐵 sadd 𝐶)
69 sadcl 16496 . . . . . . . . . . 11 ((𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝐵 sadd 𝐶) ⊆ ℕ0)
7019, 30, 69syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐵 sadd 𝐶) ⊆ ℕ0)
7168, 70sstrid 4007 . . . . . . . . 9 (𝜑 → ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ⊆ ℕ0)
72 inss2 4246 . . . . . . . . . 10 ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
73 ssfi 9212 . . . . . . . . . 10 (((0..^𝑁) ∈ Fin ∧ ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ∈ Fin)
745, 72, 73sylancl 586 . . . . . . . . 9 (𝜑 → ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ∈ Fin)
75 elfpw 9392 . . . . . . . . 9 (((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ∈ Fin))
7671, 74, 75sylanbrc 583 . . . . . . . 8 (𝜑 → ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
7714ffvelcdmi 7103 . . . . . . . 8 (((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁))) ∈ ℕ0)
7876, 77syl 17 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁))) ∈ ℕ0)
7978nn0red 12586 . . . . . 6 (𝜑 → ((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁))) ∈ ℝ)
8055, 57readdcld 11288 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) ∈ ℝ)
81 eqidd 2736 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) mod (2↑𝑁)) = (((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) mod (2↑𝑁)))
82 eqid 2735 . . . . . . 7 seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐵, 𝑚𝐶, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐵, 𝑚𝐶, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
8319, 30, 82, 60, 64sadadd3 16495 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) mod (2↑𝑁)))
8454, 54, 79, 80, 62, 81, 83modadd12d 13965 . . . . 5 (𝜑 → ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁)))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + (((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))))) mod (2↑𝑁)))
8541, 67, 843eqtr4d 2785 . . . 4 (𝜑 → ((((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁)))) mod (2↑𝑁)))
86 eqid 2735 . . . . 5 seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (𝐴 sadd 𝐵), 𝑚𝐶, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (𝐴 sadd 𝐵), 𝑚𝐶, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
8744, 30, 86, 60, 64sadadd3 16495 . . . 4 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) mod (2↑𝑁)))
88 eqid 2735 . . . . 5 seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚 ∈ (𝐵 sadd 𝐶), ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚 ∈ (𝐵 sadd 𝐶), ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
892, 70, 88, 60, 64sadadd3 16495 . . . 4 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁)))) mod (2↑𝑁)))
9085, 87, 893eqtr4d 2785 . . 3 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) mod (2↑𝑁)) = (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) mod (2↑𝑁)))
91 inss1 4245 . . . . . . . 8 (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ⊆ ((𝐴 sadd 𝐵) sadd 𝐶)
92 sadcl 16496 . . . . . . . . 9 (((𝐴 sadd 𝐵) ⊆ ℕ0𝐶 ⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) ⊆ ℕ0)
9344, 30, 92syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐴 sadd 𝐵) sadd 𝐶) ⊆ ℕ0)
9491, 93sstrid 4007 . . . . . . 7 (𝜑 → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ⊆ ℕ0)
95 inss2 4246 . . . . . . . 8 (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
96 ssfi 9212 . . . . . . . 8 (((0..^𝑁) ∈ Fin ∧ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ Fin)
975, 95, 96sylancl 586 . . . . . . 7 (𝜑 → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ Fin)
98 elfpw 9392 . . . . . . 7 ((((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ Fin))
9994, 97, 98sylanbrc 583 . . . . . 6 (𝜑 → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
10014ffvelcdmi 7103 . . . . . 6 ((((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℕ0)
10199, 100syl 17 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℕ0)
102101nn0red 12586 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℝ)
103101nn0ge0d 12588 . . . 4 (𝜑 → 0 ≤ ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))))
104101fvresd 6927 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) = (bits‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))))
105 f1ocnvfv2 7297 . . . . . . . . 9 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) = (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))
10611, 99, 105sylancr 587 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) = (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))
107104, 106eqtr3d 2777 . . . . . . 7 (𝜑 → (bits‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) = (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))
108107, 95eqsstrdi 4050 . . . . . 6 (𝜑 → (bits‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) ⊆ (0..^𝑁))
109101nn0zd 12637 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℤ)
110 bitsfzo 16469 . . . . . . 7 ((((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
111109, 60, 110syl2anc 584 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
112108, 111mpbird 257 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)))
113 elfzolt2 13705 . . . . 5 (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) < (2↑𝑁))
114112, 113syl 17 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) < (2↑𝑁))
115 modid 13933 . . . 4 (((((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) ∧ (0 ≤ ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∧ ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) < (2↑𝑁))) → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))))
116102, 62, 103, 114, 115syl22anc 839 . . 3 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))))
117 inss1 4245 . . . . . . . 8 ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ⊆ (𝐴 sadd (𝐵 sadd 𝐶))
118 sadcl 16496 . . . . . . . . 9 ((𝐴 ⊆ ℕ0 ∧ (𝐵 sadd 𝐶) ⊆ ℕ0) → (𝐴 sadd (𝐵 sadd 𝐶)) ⊆ ℕ0)
1192, 70, 118syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴 sadd (𝐵 sadd 𝐶)) ⊆ ℕ0)
120117, 119sstrid 4007 . . . . . . 7 (𝜑 → ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ⊆ ℕ0)
121 inss2 4246 . . . . . . . 8 ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
122 ssfi 9212 . . . . . . . 8 (((0..^𝑁) ∈ Fin ∧ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ Fin)
1235, 121, 122sylancl 586 . . . . . . 7 (𝜑 → ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ Fin)
124 elfpw 9392 . . . . . . 7 (((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ Fin))
125120, 123, 124sylanbrc 583 . . . . . 6 (𝜑 → ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
12614ffvelcdmi 7103 . . . . . 6 (((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℕ0)
127125, 126syl 17 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℕ0)
128127nn0red 12586 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℝ)
129 2nn 12337 . . . . . . 7 2 ∈ ℕ
130129a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℕ)
131130, 60nnexpcld 14281 . . . . 5 (𝜑 → (2↑𝑁) ∈ ℕ)
132131nnrpd 13073 . . . 4 (𝜑 → (2↑𝑁) ∈ ℝ+)
133127nn0ge0d 12588 . . . 4 (𝜑 → 0 ≤ ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
134127fvresd 6927 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) = (bits‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))))
135 f1ocnvfv2 7297 . . . . . . . . 9 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))
13611, 125, 135sylancr 587 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))
137134, 136eqtr3d 2777 . . . . . . 7 (𝜑 → (bits‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))
138137, 121eqsstrdi 4050 . . . . . 6 (𝜑 → (bits‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) ⊆ (0..^𝑁))
139127nn0zd 12637 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℤ)
140 bitsfzo 16469 . . . . . . 7 ((((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
141139, 60, 140syl2anc 584 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
142138, 141mpbird 257 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)))
143 elfzolt2 13705 . . . . 5 (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) < (2↑𝑁))
144142, 143syl 17 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) < (2↑𝑁))
145 modid 13933 . . . 4 (((((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) ∧ (0 ≤ ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∧ ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) < (2↑𝑁))) → (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
146128, 132, 133, 144, 145syl22anc 839 . . 3 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
14790, 116, 1463eqtr3d 2783 . 2 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
148 f1of1 6848 . . . . 5 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0)
14911, 12, 148mp2b 10 . . . 4 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0
150 f1fveq 7282 . . . 4 (((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0 ∧ ((((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ∧ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))) → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ↔ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
151149, 150mpan 690 . . 3 (((((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ∧ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ↔ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
15299, 125, 151syl2anc 584 . 2 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ↔ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
153147, 152mpbid 232 1 (𝜑 → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  caddwcad 1603  wcel 2106  cin 3962  wss 3963  c0 4339  ifcif 4531  𝒫 cpw 4605   class class class wbr 5148  cmpt 5231  ccnv 5688  cres 5691  wf 6559  1-1wf1 6560  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  cmpo 7433  1oc1o 8498  2oc2o 8499  Fincfn 8984  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cmin 11490  cn 12264  2c2 12319  0cn0 12524  cz 12611  +crp 13032  ..^cfzo 13691   mod cmo 13906  seqcseq 14039  cexp 14099  bitscbits 16453   sadd csad 16454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1509  df-tru 1540  df-fal 1550  df-had 1591  df-cad 1604  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-dvds 16288  df-bits 16456  df-sad 16485
This theorem is referenced by:  sadass  16505
  Copyright terms: Public domain W3C validator