MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadasslem Structured version   Visualization version   GIF version

Theorem sadasslem 15685
Description: Lemma for sadass 15686. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadasslem.1 (𝜑𝐴 ⊆ ℕ0)
sadasslem.2 (𝜑𝐵 ⊆ ℕ0)
sadasslem.3 (𝜑𝐶 ⊆ ℕ0)
sadasslem.4 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
sadasslem (𝜑 → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))

Proof of Theorem sadasslem
Dummy variables 𝑐 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4095 . . . . . . . . . . 11 (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴
2 sadasslem.1 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℕ0)
31, 2syl5ss 3871 . . . . . . . . . 10 (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
4 fzofi 13163 . . . . . . . . . . . 12 (0..^𝑁) ∈ Fin
54a1i 11 . . . . . . . . . . 11 (𝜑 → (0..^𝑁) ∈ Fin)
6 inss2 4096 . . . . . . . . . . 11 (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
7 ssfi 8539 . . . . . . . . . . 11 (((0..^𝑁) ∈ Fin ∧ (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
85, 6, 7sylancl 578 . . . . . . . . . 10 (𝜑 → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
9 elfpw 8627 . . . . . . . . . 10 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐴 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐴 ∩ (0..^𝑁)) ∈ Fin))
103, 8, 9sylanbrc 575 . . . . . . . . 9 (𝜑 → (𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
11 bitsf1o 15660 . . . . . . . . . . 11 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
12 f1ocnv 6461 . . . . . . . . . . 11 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
13 f1of 6449 . . . . . . . . . . 11 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
1411, 12, 13mp2b 10 . . . . . . . . . 10 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0
1514ffvelrni 6681 . . . . . . . . 9 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) ∈ ℕ0)
1610, 15syl 17 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) ∈ ℕ0)
1716nn0cnd 11775 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) ∈ ℂ)
18 inss1 4095 . . . . . . . . . . 11 (𝐵 ∩ (0..^𝑁)) ⊆ 𝐵
19 sadasslem.2 . . . . . . . . . . 11 (𝜑𝐵 ⊆ ℕ0)
2018, 19syl5ss 3871 . . . . . . . . . 10 (𝜑 → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
21 inss2 4096 . . . . . . . . . . 11 (𝐵 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
22 ssfi 8539 . . . . . . . . . . 11 (((0..^𝑁) ∈ Fin ∧ (𝐵 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐵 ∩ (0..^𝑁)) ∈ Fin)
235, 21, 22sylancl 578 . . . . . . . . . 10 (𝜑 → (𝐵 ∩ (0..^𝑁)) ∈ Fin)
24 elfpw 8627 . . . . . . . . . 10 ((𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐵 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐵 ∩ (0..^𝑁)) ∈ Fin))
2520, 23, 24sylanbrc 575 . . . . . . . . 9 (𝜑 → (𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
2614ffvelrni 6681 . . . . . . . . 9 ((𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) ∈ ℕ0)
2725, 26syl 17 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) ∈ ℕ0)
2827nn0cnd 11775 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) ∈ ℂ)
29 inss1 4095 . . . . . . . . . . 11 (𝐶 ∩ (0..^𝑁)) ⊆ 𝐶
30 sadasslem.3 . . . . . . . . . . 11 (𝜑𝐶 ⊆ ℕ0)
3129, 30syl5ss 3871 . . . . . . . . . 10 (𝜑 → (𝐶 ∩ (0..^𝑁)) ⊆ ℕ0)
32 inss2 4096 . . . . . . . . . . 11 (𝐶 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
33 ssfi 8539 . . . . . . . . . . 11 (((0..^𝑁) ∈ Fin ∧ (𝐶 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐶 ∩ (0..^𝑁)) ∈ Fin)
345, 32, 33sylancl 578 . . . . . . . . . 10 (𝜑 → (𝐶 ∩ (0..^𝑁)) ∈ Fin)
35 elfpw 8627 . . . . . . . . . 10 ((𝐶 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐶 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐶 ∩ (0..^𝑁)) ∈ Fin))
3631, 34, 35sylanbrc 575 . . . . . . . . 9 (𝜑 → (𝐶 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
3714ffvelrni 6681 . . . . . . . . 9 ((𝐶 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))) ∈ ℕ0)
3836, 37syl 17 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))) ∈ ℕ0)
3938nn0cnd 11775 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))) ∈ ℂ)
4017, 28, 39addassd 10468 . . . . . 6 (𝜑 → ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) = (((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + (((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))))))
4140oveq1d 6997 . . . . 5 (𝜑 → (((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + (((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))))) mod (2↑𝑁)))
42 inss1 4095 . . . . . . . . . 10 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (𝐴 sadd 𝐵)
43 sadcl 15677 . . . . . . . . . . 11 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0) → (𝐴 sadd 𝐵) ⊆ ℕ0)
442, 19, 43syl2anc 576 . . . . . . . . . 10 (𝜑 → (𝐴 sadd 𝐵) ⊆ ℕ0)
4542, 44syl5ss 3871 . . . . . . . . 9 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0)
46 inss2 4096 . . . . . . . . . 10 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
47 ssfi 8539 . . . . . . . . . 10 (((0..^𝑁) ∈ Fin ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
485, 46, 47sylancl 578 . . . . . . . . 9 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
49 elfpw 8627 . . . . . . . . 9 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin))
5045, 48, 49sylanbrc 575 . . . . . . . 8 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
5114ffvelrni 6681 . . . . . . . 8 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
5250, 51syl 17 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
5352nn0red 11774 . . . . . 6 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℝ)
5416nn0red 11774 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) ∈ ℝ)
5527nn0red 11774 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) ∈ ℝ)
5654, 55readdcld 10475 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) ∈ ℝ)
5738nn0red 11774 . . . . . 6 (𝜑 → ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))) ∈ ℝ)
58 2rp 12215 . . . . . . . 8 2 ∈ ℝ+
5958a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ+)
60 sadasslem.4 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
6160nn0zd 11904 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
6259, 61rpexpcld 13429 . . . . . 6 (𝜑 → (2↑𝑁) ∈ ℝ+)
63 eqid 2780 . . . . . . 7 seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
64 eqid 2780 . . . . . . 7 (bits ↾ ℕ0) = (bits ↾ ℕ0)
652, 19, 63, 60, 64sadadd3 15676 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁)))
66 eqidd 2781 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))) mod (2↑𝑁)) = (((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))) mod (2↑𝑁)))
6753, 56, 57, 57, 62, 65, 66modadd12d 13116 . . . . 5 (𝜑 → ((((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) mod (2↑𝑁)) = (((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) mod (2↑𝑁)))
68 inss1 4095 . . . . . . . . . 10 ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ⊆ (𝐵 sadd 𝐶)
69 sadcl 15677 . . . . . . . . . . 11 ((𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝐵 sadd 𝐶) ⊆ ℕ0)
7019, 30, 69syl2anc 576 . . . . . . . . . 10 (𝜑 → (𝐵 sadd 𝐶) ⊆ ℕ0)
7168, 70syl5ss 3871 . . . . . . . . 9 (𝜑 → ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ⊆ ℕ0)
72 inss2 4096 . . . . . . . . . 10 ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
73 ssfi 8539 . . . . . . . . . 10 (((0..^𝑁) ∈ Fin ∧ ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ∈ Fin)
745, 72, 73sylancl 578 . . . . . . . . 9 (𝜑 → ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ∈ Fin)
75 elfpw 8627 . . . . . . . . 9 (((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ∈ Fin))
7671, 74, 75sylanbrc 575 . . . . . . . 8 (𝜑 → ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
7714ffvelrni 6681 . . . . . . . 8 (((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁))) ∈ ℕ0)
7876, 77syl 17 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁))) ∈ ℕ0)
7978nn0red 11774 . . . . . 6 (𝜑 → ((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁))) ∈ ℝ)
8055, 57readdcld 10475 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) ∈ ℝ)
81 eqidd 2781 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) mod (2↑𝑁)) = (((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) mod (2↑𝑁)))
82 eqid 2780 . . . . . . 7 seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐵, 𝑚𝐶, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐵, 𝑚𝐶, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
8319, 30, 82, 60, 64sadadd3 15676 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) mod (2↑𝑁)))
8454, 54, 79, 80, 62, 81, 83modadd12d 13116 . . . . 5 (𝜑 → ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁)))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + (((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))))) mod (2↑𝑁)))
8541, 67, 843eqtr4d 2826 . . . 4 (𝜑 → ((((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁)))) mod (2↑𝑁)))
86 eqid 2780 . . . . 5 seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (𝐴 sadd 𝐵), 𝑚𝐶, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (𝐴 sadd 𝐵), 𝑚𝐶, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
8744, 30, 86, 60, 64sadadd3 15676 . . . 4 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) mod (2↑𝑁)))
88 eqid 2780 . . . . 5 seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚 ∈ (𝐵 sadd 𝐶), ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚 ∈ (𝐵 sadd 𝐶), ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
892, 70, 88, 60, 64sadadd3 15676 . . . 4 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁)))) mod (2↑𝑁)))
9085, 87, 893eqtr4d 2826 . . 3 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) mod (2↑𝑁)) = (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) mod (2↑𝑁)))
91 inss1 4095 . . . . . . . 8 (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ⊆ ((𝐴 sadd 𝐵) sadd 𝐶)
92 sadcl 15677 . . . . . . . . 9 (((𝐴 sadd 𝐵) ⊆ ℕ0𝐶 ⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) ⊆ ℕ0)
9344, 30, 92syl2anc 576 . . . . . . . 8 (𝜑 → ((𝐴 sadd 𝐵) sadd 𝐶) ⊆ ℕ0)
9491, 93syl5ss 3871 . . . . . . 7 (𝜑 → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ⊆ ℕ0)
95 inss2 4096 . . . . . . . 8 (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
96 ssfi 8539 . . . . . . . 8 (((0..^𝑁) ∈ Fin ∧ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ Fin)
975, 95, 96sylancl 578 . . . . . . 7 (𝜑 → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ Fin)
98 elfpw 8627 . . . . . . 7 ((((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ Fin))
9994, 97, 98sylanbrc 575 . . . . . 6 (𝜑 → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
10014ffvelrni 6681 . . . . . 6 ((((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℕ0)
10199, 100syl 17 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℕ0)
102101nn0red 11774 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℝ)
103101nn0ge0d 11776 . . . 4 (𝜑 → 0 ≤ ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))))
104101fvresd 6524 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) = (bits‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))))
105 f1ocnvfv2 6865 . . . . . . . . 9 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) = (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))
10611, 99, 105sylancr 579 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) = (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))
107104, 106eqtr3d 2818 . . . . . . 7 (𝜑 → (bits‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) = (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))
108107, 95syl6eqss 3913 . . . . . 6 (𝜑 → (bits‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) ⊆ (0..^𝑁))
109101nn0zd 11904 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℤ)
110 bitsfzo 15650 . . . . . . 7 ((((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
111109, 60, 110syl2anc 576 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
112108, 111mpbird 249 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)))
113 elfzolt2 12869 . . . . 5 (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) < (2↑𝑁))
114112, 113syl 17 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) < (2↑𝑁))
115 modid 13085 . . . 4 (((((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) ∧ (0 ≤ ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∧ ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) < (2↑𝑁))) → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))))
116102, 62, 103, 114, 115syl22anc 827 . . 3 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))))
117 inss1 4095 . . . . . . . 8 ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ⊆ (𝐴 sadd (𝐵 sadd 𝐶))
118 sadcl 15677 . . . . . . . . 9 ((𝐴 ⊆ ℕ0 ∧ (𝐵 sadd 𝐶) ⊆ ℕ0) → (𝐴 sadd (𝐵 sadd 𝐶)) ⊆ ℕ0)
1192, 70, 118syl2anc 576 . . . . . . . 8 (𝜑 → (𝐴 sadd (𝐵 sadd 𝐶)) ⊆ ℕ0)
120117, 119syl5ss 3871 . . . . . . 7 (𝜑 → ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ⊆ ℕ0)
121 inss2 4096 . . . . . . . 8 ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
122 ssfi 8539 . . . . . . . 8 (((0..^𝑁) ∈ Fin ∧ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ Fin)
1235, 121, 122sylancl 578 . . . . . . 7 (𝜑 → ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ Fin)
124 elfpw 8627 . . . . . . 7 (((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ Fin))
125120, 123, 124sylanbrc 575 . . . . . 6 (𝜑 → ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
12614ffvelrni 6681 . . . . . 6 (((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℕ0)
127125, 126syl 17 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℕ0)
128127nn0red 11774 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℝ)
129 2nn 11519 . . . . . . 7 2 ∈ ℕ
130129a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℕ)
131130, 60nnexpcld 13427 . . . . 5 (𝜑 → (2↑𝑁) ∈ ℕ)
132131nnrpd 12252 . . . 4 (𝜑 → (2↑𝑁) ∈ ℝ+)
133127nn0ge0d 11776 . . . 4 (𝜑 → 0 ≤ ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
134127fvresd 6524 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) = (bits‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))))
135 f1ocnvfv2 6865 . . . . . . . . 9 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))
13611, 125, 135sylancr 579 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))
137134, 136eqtr3d 2818 . . . . . . 7 (𝜑 → (bits‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))
138137, 121syl6eqss 3913 . . . . . 6 (𝜑 → (bits‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) ⊆ (0..^𝑁))
139127nn0zd 11904 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℤ)
140 bitsfzo 15650 . . . . . . 7 ((((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
141139, 60, 140syl2anc 576 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
142138, 141mpbird 249 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)))
143 elfzolt2 12869 . . . . 5 (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) < (2↑𝑁))
144142, 143syl 17 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) < (2↑𝑁))
145 modid 13085 . . . 4 (((((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) ∧ (0 ≤ ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∧ ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) < (2↑𝑁))) → (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
146128, 132, 133, 144, 145syl22anc 827 . . 3 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
14790, 116, 1463eqtr3d 2824 . 2 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
148 f1of1 6448 . . . . 5 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0)
14911, 12, 148mp2b 10 . . . 4 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0
150 f1fveq 6851 . . . 4 (((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0 ∧ ((((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ∧ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))) → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ↔ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
151149, 150mpan 678 . . 3 (((((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ∧ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ↔ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
15299, 125, 151syl2anc 576 . 2 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ↔ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
153147, 152mpbid 224 1 (𝜑 → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1508  caddwcad 1570  wcel 2051  cin 3830  wss 3831  c0 4181  ifcif 4353  𝒫 cpw 4425   class class class wbr 4934  cmpt 5013  ccnv 5410  cres 5413  wf 6189  1-1wf1 6190  1-1-ontowf1o 6192  cfv 6193  (class class class)co 6982  cmpo 6984  1oc1o 7904  2oc2o 7905  Fincfn 8312  cr 10340  0cc0 10341  1c1 10342   + caddc 10344   < clt 10480  cle 10481  cmin 10676  cn 11445  2c2 11501  0cn0 11713  cz 11799  +crp 12210  ..^cfzo 12855   mod cmo 13058  seqcseq 13190  cexp 13250  bitscbits 15634   sadd csad 15635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-inf2 8904  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418  ax-pre-sup 10419
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-xor 1490  df-tru 1511  df-fal 1521  df-had 1558  df-cad 1571  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-disj 4903  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-se 5371  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-isom 6202  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-om 7403  df-1st 7507  df-2nd 7508  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-2o 7912  df-oadd 7915  df-er 8095  df-map 8214  df-pm 8215  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-sup 8707  df-inf 8708  df-oi 8775  df-dju 9130  df-card 9168  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-div 11105  df-nn 11446  df-2 11509  df-3 11510  df-n0 11714  df-xnn0 11786  df-z 11800  df-uz 12065  df-rp 12211  df-fz 12715  df-fzo 12856  df-fl 12983  df-mod 13059  df-seq 13191  df-exp 13251  df-hash 13512  df-cj 14325  df-re 14326  df-im 14327  df-sqrt 14461  df-abs 14462  df-clim 14712  df-sum 14910  df-dvds 15474  df-bits 15637  df-sad 15666
This theorem is referenced by:  sadass  15686
  Copyright terms: Public domain W3C validator