| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzocongeq | Structured version Visualization version GIF version | ||
| Description: Two different elements of a half-open range are not congruent mod its length. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| Ref | Expression |
|---|---|
| fzocongeq | ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷 − 𝐶) ∥ (𝐴 − 𝐵) ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel2 13698 | . . . . 5 ⊢ (𝐵 ∈ (𝐶..^𝐷) → 𝐷 ∈ ℤ) | |
| 2 | elfzoel1 13697 | . . . . 5 ⊢ (𝐵 ∈ (𝐶..^𝐷) → 𝐶 ∈ ℤ) | |
| 3 | 1, 2 | zsubcld 12727 | . . . 4 ⊢ (𝐵 ∈ (𝐶..^𝐷) → (𝐷 − 𝐶) ∈ ℤ) |
| 4 | elfzoelz 13699 | . . . . 5 ⊢ (𝐴 ∈ (𝐶..^𝐷) → 𝐴 ∈ ℤ) | |
| 5 | elfzoelz 13699 | . . . . 5 ⊢ (𝐵 ∈ (𝐶..^𝐷) → 𝐵 ∈ ℤ) | |
| 6 | zsubcl 12659 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℤ) | |
| 7 | 4, 5, 6 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐴 − 𝐵) ∈ ℤ) |
| 8 | dvdsabsb 16313 | . . . 4 ⊢ (((𝐷 − 𝐶) ∈ ℤ ∧ (𝐴 − 𝐵) ∈ ℤ) → ((𝐷 − 𝐶) ∥ (𝐴 − 𝐵) ↔ (𝐷 − 𝐶) ∥ (abs‘(𝐴 − 𝐵)))) | |
| 9 | 3, 7, 8 | syl2an2 686 | . . 3 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷 − 𝐶) ∥ (𝐴 − 𝐵) ↔ (𝐷 − 𝐶) ∥ (abs‘(𝐴 − 𝐵)))) |
| 10 | fzomaxdif 15382 | . . . 4 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (abs‘(𝐴 − 𝐵)) ∈ (0..^(𝐷 − 𝐶))) | |
| 11 | fzo0dvdseq 16360 | . . . 4 ⊢ ((abs‘(𝐴 − 𝐵)) ∈ (0..^(𝐷 − 𝐶)) → ((𝐷 − 𝐶) ∥ (abs‘(𝐴 − 𝐵)) ↔ (abs‘(𝐴 − 𝐵)) = 0)) | |
| 12 | 10, 11 | syl 17 | . . 3 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷 − 𝐶) ∥ (abs‘(𝐴 − 𝐵)) ↔ (abs‘(𝐴 − 𝐵)) = 0)) |
| 13 | 9, 12 | bitrd 279 | . 2 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷 − 𝐶) ∥ (𝐴 − 𝐵) ↔ (abs‘(𝐴 − 𝐵)) = 0)) |
| 14 | 4 | zcnd 12723 | . . . . 5 ⊢ (𝐴 ∈ (𝐶..^𝐷) → 𝐴 ∈ ℂ) |
| 15 | 5 | zcnd 12723 | . . . . 5 ⊢ (𝐵 ∈ (𝐶..^𝐷) → 𝐵 ∈ ℂ) |
| 16 | subcl 11507 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
| 17 | 14, 15, 16 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐴 − 𝐵) ∈ ℂ) |
| 18 | 17 | abs00ad 15329 | . . 3 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((abs‘(𝐴 − 𝐵)) = 0 ↔ (𝐴 − 𝐵) = 0)) |
| 19 | subeq0 11535 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | |
| 20 | 14, 15, 19 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
| 21 | 18, 20 | bitrd 279 | . 2 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((abs‘(𝐴 − 𝐵)) = 0 ↔ 𝐴 = 𝐵)) |
| 22 | 13, 21 | bitrd 279 | 1 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷 − 𝐶) ∥ (𝐴 − 𝐵) ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 0cc0 11155 − cmin 11492 ℤcz 12613 ..^cfzo 13694 abscabs 15273 ∥ cdvds 16290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-dvds 16291 |
| This theorem is referenced by: addmodlteqALT 16362 odf1o2 19591 |
| Copyright terms: Public domain | W3C validator |