![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzocongeq | Structured version Visualization version GIF version |
Description: Two different elements of a half-open range are not congruent mod its length. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
fzocongeq | ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷 − 𝐶) ∥ (𝐴 − 𝐵) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoel2 13636 | . . . . 5 ⊢ (𝐵 ∈ (𝐶..^𝐷) → 𝐷 ∈ ℤ) | |
2 | elfzoel1 13635 | . . . . 5 ⊢ (𝐵 ∈ (𝐶..^𝐷) → 𝐶 ∈ ℤ) | |
3 | 1, 2 | zsubcld 12676 | . . . 4 ⊢ (𝐵 ∈ (𝐶..^𝐷) → (𝐷 − 𝐶) ∈ ℤ) |
4 | elfzoelz 13637 | . . . . 5 ⊢ (𝐴 ∈ (𝐶..^𝐷) → 𝐴 ∈ ℤ) | |
5 | elfzoelz 13637 | . . . . 5 ⊢ (𝐵 ∈ (𝐶..^𝐷) → 𝐵 ∈ ℤ) | |
6 | zsubcl 12609 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℤ) | |
7 | 4, 5, 6 | syl2an 595 | . . . 4 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐴 − 𝐵) ∈ ℤ) |
8 | dvdsabsb 16224 | . . . 4 ⊢ (((𝐷 − 𝐶) ∈ ℤ ∧ (𝐴 − 𝐵) ∈ ℤ) → ((𝐷 − 𝐶) ∥ (𝐴 − 𝐵) ↔ (𝐷 − 𝐶) ∥ (abs‘(𝐴 − 𝐵)))) | |
9 | 3, 7, 8 | syl2an2 683 | . . 3 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷 − 𝐶) ∥ (𝐴 − 𝐵) ↔ (𝐷 − 𝐶) ∥ (abs‘(𝐴 − 𝐵)))) |
10 | fzomaxdif 15295 | . . . 4 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (abs‘(𝐴 − 𝐵)) ∈ (0..^(𝐷 − 𝐶))) | |
11 | fzo0dvdseq 16271 | . . . 4 ⊢ ((abs‘(𝐴 − 𝐵)) ∈ (0..^(𝐷 − 𝐶)) → ((𝐷 − 𝐶) ∥ (abs‘(𝐴 − 𝐵)) ↔ (abs‘(𝐴 − 𝐵)) = 0)) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷 − 𝐶) ∥ (abs‘(𝐴 − 𝐵)) ↔ (abs‘(𝐴 − 𝐵)) = 0)) |
13 | 9, 12 | bitrd 279 | . 2 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷 − 𝐶) ∥ (𝐴 − 𝐵) ↔ (abs‘(𝐴 − 𝐵)) = 0)) |
14 | 4 | zcnd 12672 | . . . . 5 ⊢ (𝐴 ∈ (𝐶..^𝐷) → 𝐴 ∈ ℂ) |
15 | 5 | zcnd 12672 | . . . . 5 ⊢ (𝐵 ∈ (𝐶..^𝐷) → 𝐵 ∈ ℂ) |
16 | subcl 11464 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
17 | 14, 15, 16 | syl2an 595 | . . . 4 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐴 − 𝐵) ∈ ℂ) |
18 | 17 | abs00ad 15242 | . . 3 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((abs‘(𝐴 − 𝐵)) = 0 ↔ (𝐴 − 𝐵) = 0)) |
19 | subeq0 11491 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | |
20 | 14, 15, 19 | syl2an 595 | . . 3 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
21 | 18, 20 | bitrd 279 | . 2 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((abs‘(𝐴 − 𝐵)) = 0 ↔ 𝐴 = 𝐵)) |
22 | 13, 21 | bitrd 279 | 1 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷 − 𝐶) ∥ (𝐴 − 𝐵) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 ℂcc 11112 0cc0 11114 − cmin 11449 ℤcz 12563 ..^cfzo 13632 abscabs 15186 ∥ cdvds 16202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-sup 9441 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-rp 12980 df-fz 13490 df-fzo 13633 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-dvds 16203 |
This theorem is referenced by: addmodlteqALT 16273 odf1o2 19483 |
Copyright terms: Public domain | W3C validator |