Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzocongeq | Structured version Visualization version GIF version |
Description: Two different elements of a half-open range are not congruent mod its length. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
fzocongeq | ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷 − 𝐶) ∥ (𝐴 − 𝐵) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoel2 13499 | . . . . 5 ⊢ (𝐵 ∈ (𝐶..^𝐷) → 𝐷 ∈ ℤ) | |
2 | elfzoel1 13498 | . . . . 5 ⊢ (𝐵 ∈ (𝐶..^𝐷) → 𝐶 ∈ ℤ) | |
3 | 1, 2 | zsubcld 12544 | . . . 4 ⊢ (𝐵 ∈ (𝐶..^𝐷) → (𝐷 − 𝐶) ∈ ℤ) |
4 | elfzoelz 13500 | . . . . 5 ⊢ (𝐴 ∈ (𝐶..^𝐷) → 𝐴 ∈ ℤ) | |
5 | elfzoelz 13500 | . . . . 5 ⊢ (𝐵 ∈ (𝐶..^𝐷) → 𝐵 ∈ ℤ) | |
6 | zsubcl 12475 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℤ) | |
7 | 4, 5, 6 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐴 − 𝐵) ∈ ℤ) |
8 | dvdsabsb 16092 | . . . 4 ⊢ (((𝐷 − 𝐶) ∈ ℤ ∧ (𝐴 − 𝐵) ∈ ℤ) → ((𝐷 − 𝐶) ∥ (𝐴 − 𝐵) ↔ (𝐷 − 𝐶) ∥ (abs‘(𝐴 − 𝐵)))) | |
9 | 3, 7, 8 | syl2an2 684 | . . 3 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷 − 𝐶) ∥ (𝐴 − 𝐵) ↔ (𝐷 − 𝐶) ∥ (abs‘(𝐴 − 𝐵)))) |
10 | fzomaxdif 15162 | . . . 4 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (abs‘(𝐴 − 𝐵)) ∈ (0..^(𝐷 − 𝐶))) | |
11 | fzo0dvdseq 16139 | . . . 4 ⊢ ((abs‘(𝐴 − 𝐵)) ∈ (0..^(𝐷 − 𝐶)) → ((𝐷 − 𝐶) ∥ (abs‘(𝐴 − 𝐵)) ↔ (abs‘(𝐴 − 𝐵)) = 0)) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷 − 𝐶) ∥ (abs‘(𝐴 − 𝐵)) ↔ (abs‘(𝐴 − 𝐵)) = 0)) |
13 | 9, 12 | bitrd 278 | . 2 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷 − 𝐶) ∥ (𝐴 − 𝐵) ↔ (abs‘(𝐴 − 𝐵)) = 0)) |
14 | 4 | zcnd 12540 | . . . . 5 ⊢ (𝐴 ∈ (𝐶..^𝐷) → 𝐴 ∈ ℂ) |
15 | 5 | zcnd 12540 | . . . . 5 ⊢ (𝐵 ∈ (𝐶..^𝐷) → 𝐵 ∈ ℂ) |
16 | subcl 11333 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
17 | 14, 15, 16 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐴 − 𝐵) ∈ ℂ) |
18 | 17 | abs00ad 15109 | . . 3 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((abs‘(𝐴 − 𝐵)) = 0 ↔ (𝐴 − 𝐵) = 0)) |
19 | subeq0 11360 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | |
20 | 14, 15, 19 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
21 | 18, 20 | bitrd 278 | . 2 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((abs‘(𝐴 − 𝐵)) = 0 ↔ 𝐴 = 𝐵)) |
22 | 13, 21 | bitrd 278 | 1 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷 − 𝐶) ∥ (𝐴 − 𝐵) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 class class class wbr 5103 ‘cfv 6491 (class class class)co 7349 ℂcc 10982 0cc0 10984 − cmin 11318 ℤcz 12432 ..^cfzo 13495 abscabs 15052 ∥ cdvds 16070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7662 ax-cnex 11040 ax-resscn 11041 ax-1cn 11042 ax-icn 11043 ax-addcl 11044 ax-addrcl 11045 ax-mulcl 11046 ax-mulrcl 11047 ax-mulcom 11048 ax-addass 11049 ax-mulass 11050 ax-distr 11051 ax-i2m1 11052 ax-1ne0 11053 ax-1rid 11054 ax-rnegex 11055 ax-rrecex 11056 ax-cnre 11057 ax-pre-lttri 11058 ax-pre-lttrn 11059 ax-pre-ltadd 11060 ax-pre-mulgt0 11061 ax-pre-sup 11062 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5528 df-eprel 5534 df-po 5542 df-so 5543 df-fr 5585 df-we 5587 df-xp 5636 df-rel 5637 df-cnv 5638 df-co 5639 df-dm 5640 df-rn 5641 df-res 5642 df-ima 5643 df-pred 6249 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6443 df-fun 6493 df-fn 6494 df-f 6495 df-f1 6496 df-fo 6497 df-f1o 6498 df-fv 6499 df-riota 7305 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7793 df-1st 7911 df-2nd 7912 df-frecs 8179 df-wrecs 8210 df-recs 8284 df-rdg 8323 df-er 8581 df-en 8817 df-dom 8818 df-sdom 8819 df-sup 9311 df-pnf 11124 df-mnf 11125 df-xr 11126 df-ltxr 11127 df-le 11128 df-sub 11320 df-neg 11321 df-div 11746 df-nn 12087 df-2 12149 df-3 12150 df-n0 12347 df-z 12433 df-uz 12696 df-rp 12844 df-fz 13353 df-fzo 13496 df-seq 13835 df-exp 13896 df-cj 14917 df-re 14918 df-im 14919 df-sqrt 15053 df-abs 15054 df-dvds 16071 |
This theorem is referenced by: addmodlteqALT 16141 odf1o2 19284 |
Copyright terms: Public domain | W3C validator |