MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzocongeq Structured version   Visualization version   GIF version

Theorem fzocongeq 16235
Description: Two different elements of a half-open range are not congruent mod its length. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
fzocongeq ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷𝐶) ∥ (𝐴𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem fzocongeq
StepHypRef Expression
1 elfzoel2 13558 . . . . 5 (𝐵 ∈ (𝐶..^𝐷) → 𝐷 ∈ ℤ)
2 elfzoel1 13557 . . . . 5 (𝐵 ∈ (𝐶..^𝐷) → 𝐶 ∈ ℤ)
31, 2zsubcld 12582 . . . 4 (𝐵 ∈ (𝐶..^𝐷) → (𝐷𝐶) ∈ ℤ)
4 elfzoelz 13559 . . . . 5 (𝐴 ∈ (𝐶..^𝐷) → 𝐴 ∈ ℤ)
5 elfzoelz 13559 . . . . 5 (𝐵 ∈ (𝐶..^𝐷) → 𝐵 ∈ ℤ)
6 zsubcl 12514 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
74, 5, 6syl2an 596 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐴𝐵) ∈ ℤ)
8 dvdsabsb 16186 . . . 4 (((𝐷𝐶) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → ((𝐷𝐶) ∥ (𝐴𝐵) ↔ (𝐷𝐶) ∥ (abs‘(𝐴𝐵))))
93, 7, 8syl2an2 686 . . 3 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷𝐶) ∥ (𝐴𝐵) ↔ (𝐷𝐶) ∥ (abs‘(𝐴𝐵))))
10 fzomaxdif 15251 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (abs‘(𝐴𝐵)) ∈ (0..^(𝐷𝐶)))
11 fzo0dvdseq 16234 . . . 4 ((abs‘(𝐴𝐵)) ∈ (0..^(𝐷𝐶)) → ((𝐷𝐶) ∥ (abs‘(𝐴𝐵)) ↔ (abs‘(𝐴𝐵)) = 0))
1210, 11syl 17 . . 3 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷𝐶) ∥ (abs‘(𝐴𝐵)) ↔ (abs‘(𝐴𝐵)) = 0))
139, 12bitrd 279 . 2 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷𝐶) ∥ (𝐴𝐵) ↔ (abs‘(𝐴𝐵)) = 0))
144zcnd 12578 . . . . 5 (𝐴 ∈ (𝐶..^𝐷) → 𝐴 ∈ ℂ)
155zcnd 12578 . . . . 5 (𝐵 ∈ (𝐶..^𝐷) → 𝐵 ∈ ℂ)
16 subcl 11359 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
1714, 15, 16syl2an 596 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐴𝐵) ∈ ℂ)
1817abs00ad 15197 . . 3 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((abs‘(𝐴𝐵)) = 0 ↔ (𝐴𝐵) = 0))
19 subeq0 11387 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
2014, 15, 19syl2an 596 . . 3 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
2118, 20bitrd 279 . 2 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((abs‘(𝐴𝐵)) = 0 ↔ 𝐴 = 𝐵))
2213, 21bitrd 279 1 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷𝐶) ∥ (𝐴𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111   class class class wbr 5089  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  cmin 11344  cz 12468  ..^cfzo 13554  abscabs 15141  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164
This theorem is referenced by:  addmodlteqALT  16236  odf1o2  19485
  Copyright terms: Public domain W3C validator