MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzocongeq Structured version   Visualization version   GIF version

Theorem fzocongeq 16301
Description: Two different elements of a half-open range are not congruent mod its length. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
fzocongeq ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷𝐶) ∥ (𝐴𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem fzocongeq
StepHypRef Expression
1 elfzoel2 13626 . . . . 5 (𝐵 ∈ (𝐶..^𝐷) → 𝐷 ∈ ℤ)
2 elfzoel1 13625 . . . . 5 (𝐵 ∈ (𝐶..^𝐷) → 𝐶 ∈ ℤ)
31, 2zsubcld 12650 . . . 4 (𝐵 ∈ (𝐶..^𝐷) → (𝐷𝐶) ∈ ℤ)
4 elfzoelz 13627 . . . . 5 (𝐴 ∈ (𝐶..^𝐷) → 𝐴 ∈ ℤ)
5 elfzoelz 13627 . . . . 5 (𝐵 ∈ (𝐶..^𝐷) → 𝐵 ∈ ℤ)
6 zsubcl 12582 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
74, 5, 6syl2an 596 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐴𝐵) ∈ ℤ)
8 dvdsabsb 16252 . . . 4 (((𝐷𝐶) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → ((𝐷𝐶) ∥ (𝐴𝐵) ↔ (𝐷𝐶) ∥ (abs‘(𝐴𝐵))))
93, 7, 8syl2an2 686 . . 3 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷𝐶) ∥ (𝐴𝐵) ↔ (𝐷𝐶) ∥ (abs‘(𝐴𝐵))))
10 fzomaxdif 15317 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (abs‘(𝐴𝐵)) ∈ (0..^(𝐷𝐶)))
11 fzo0dvdseq 16300 . . . 4 ((abs‘(𝐴𝐵)) ∈ (0..^(𝐷𝐶)) → ((𝐷𝐶) ∥ (abs‘(𝐴𝐵)) ↔ (abs‘(𝐴𝐵)) = 0))
1210, 11syl 17 . . 3 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷𝐶) ∥ (abs‘(𝐴𝐵)) ↔ (abs‘(𝐴𝐵)) = 0))
139, 12bitrd 279 . 2 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷𝐶) ∥ (𝐴𝐵) ↔ (abs‘(𝐴𝐵)) = 0))
144zcnd 12646 . . . . 5 (𝐴 ∈ (𝐶..^𝐷) → 𝐴 ∈ ℂ)
155zcnd 12646 . . . . 5 (𝐵 ∈ (𝐶..^𝐷) → 𝐵 ∈ ℂ)
16 subcl 11427 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
1714, 15, 16syl2an 596 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐴𝐵) ∈ ℂ)
1817abs00ad 15263 . . 3 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((abs‘(𝐴𝐵)) = 0 ↔ (𝐴𝐵) = 0))
19 subeq0 11455 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
2014, 15, 19syl2an 596 . . 3 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
2118, 20bitrd 279 . 2 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((abs‘(𝐴𝐵)) = 0 ↔ 𝐴 = 𝐵))
2213, 21bitrd 279 1 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷𝐶) ∥ (𝐴𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  cmin 11412  cz 12536  ..^cfzo 13622  abscabs 15207  cdvds 16229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230
This theorem is referenced by:  addmodlteqALT  16302  odf1o2  19510
  Copyright terms: Public domain W3C validator