MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzostep1 Structured version   Visualization version   GIF version

Theorem fzostep1 13582
Description: Two possibilities for a number one greater than a number in a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
fzostep1 (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶))

Proof of Theorem fzostep1
StepHypRef Expression
1 elfzoel1 13464 . . . 4 (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ)
2 uzid 12676 . . . 4 (𝐵 ∈ ℤ → 𝐵 ∈ (ℤ𝐵))
3 peano2uz 12720 . . . 4 (𝐵 ∈ (ℤ𝐵) → (𝐵 + 1) ∈ (ℤ𝐵))
4 fzoss1 13493 . . . 4 ((𝐵 + 1) ∈ (ℤ𝐵) → ((𝐵 + 1)..^(𝐶 + 1)) ⊆ (𝐵..^(𝐶 + 1)))
51, 2, 3, 44syl 19 . . 3 (𝐴 ∈ (𝐵..^𝐶) → ((𝐵 + 1)..^(𝐶 + 1)) ⊆ (𝐵..^(𝐶 + 1)))
6 1z 12429 . . . 4 1 ∈ ℤ
7 fzoaddel 13519 . . . 4 ((𝐴 ∈ (𝐵..^𝐶) ∧ 1 ∈ ℤ) → (𝐴 + 1) ∈ ((𝐵 + 1)..^(𝐶 + 1)))
86, 7mpan2 688 . . 3 (𝐴 ∈ (𝐵..^𝐶) → (𝐴 + 1) ∈ ((𝐵 + 1)..^(𝐶 + 1)))
95, 8sseldd 3931 . 2 (𝐴 ∈ (𝐵..^𝐶) → (𝐴 + 1) ∈ (𝐵..^(𝐶 + 1)))
10 elfzoel2 13465 . . . 4 (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ)
11 elfzolt3 13476 . . . . 5 (𝐴 ∈ (𝐵..^𝐶) → 𝐵 < 𝐶)
12 zre 12402 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
13 zre 12402 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℝ)
14 ltle 11142 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶𝐵𝐶))
1512, 13, 14syl2an 596 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 < 𝐶𝐵𝐶))
161, 10, 15syl2anc 584 . . . . 5 (𝐴 ∈ (𝐵..^𝐶) → (𝐵 < 𝐶𝐵𝐶))
1711, 16mpd 15 . . . 4 (𝐴 ∈ (𝐵..^𝐶) → 𝐵𝐶)
18 eluz2 12667 . . . 4 (𝐶 ∈ (ℤ𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵𝐶))
191, 10, 17, 18syl3anbrc 1342 . . 3 (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ (ℤ𝐵))
20 fzosplitsni 13577 . . 3 (𝐶 ∈ (ℤ𝐵) → ((𝐴 + 1) ∈ (𝐵..^(𝐶 + 1)) ↔ ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶)))
2119, 20syl 17 . 2 (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^(𝐶 + 1)) ↔ ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶)))
229, 21mpbid 231 1 (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 844   = wceq 1540  wcel 2105  wss 3896   class class class wbr 5086  cfv 6465  (class class class)co 7316  cr 10949  1c1 10951   + caddc 10953   < clt 11088  cle 11089  cz 12398  cuz 12661  ..^cfzo 13461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-er 8547  df-en 8783  df-dom 8784  df-sdom 8785  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-nn 12053  df-n0 12313  df-z 12399  df-uz 12662  df-fz 13319  df-fzo 13462
This theorem is referenced by:  psgnunilem5  19175
  Copyright terms: Public domain W3C validator