Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzostep1 | Structured version Visualization version GIF version |
Description: Two possibilities for a number one greater than a number in a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
Ref | Expression |
---|---|
fzostep1 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoel1 13464 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) | |
2 | uzid 12676 | . . . 4 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ (ℤ≥‘𝐵)) | |
3 | peano2uz 12720 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐵) → (𝐵 + 1) ∈ (ℤ≥‘𝐵)) | |
4 | fzoss1 13493 | . . . 4 ⊢ ((𝐵 + 1) ∈ (ℤ≥‘𝐵) → ((𝐵 + 1)..^(𝐶 + 1)) ⊆ (𝐵..^(𝐶 + 1))) | |
5 | 1, 2, 3, 4 | 4syl 19 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐵 + 1)..^(𝐶 + 1)) ⊆ (𝐵..^(𝐶 + 1))) |
6 | 1z 12429 | . . . 4 ⊢ 1 ∈ ℤ | |
7 | fzoaddel 13519 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 1 ∈ ℤ) → (𝐴 + 1) ∈ ((𝐵 + 1)..^(𝐶 + 1))) | |
8 | 6, 7 | mpan2 688 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐴 + 1) ∈ ((𝐵 + 1)..^(𝐶 + 1))) |
9 | 5, 8 | sseldd 3931 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐴 + 1) ∈ (𝐵..^(𝐶 + 1))) |
10 | elfzoel2 13465 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) | |
11 | elfzolt3 13476 | . . . . 5 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 < 𝐶) | |
12 | zre 12402 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
13 | zre 12402 | . . . . . . 7 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ ℝ) | |
14 | ltle 11142 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 → 𝐵 ≤ 𝐶)) | |
15 | 12, 13, 14 | syl2an 596 | . . . . . 6 ⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 < 𝐶 → 𝐵 ≤ 𝐶)) |
16 | 1, 10, 15 | syl2anc 584 | . . . . 5 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵 < 𝐶 → 𝐵 ≤ 𝐶)) |
17 | 11, 16 | mpd 15 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ≤ 𝐶) |
18 | eluz2 12667 | . . . 4 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ≤ 𝐶)) | |
19 | 1, 10, 17, 18 | syl3anbrc 1342 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ (ℤ≥‘𝐵)) |
20 | fzosplitsni 13577 | . . 3 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) → ((𝐴 + 1) ∈ (𝐵..^(𝐶 + 1)) ↔ ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶))) | |
21 | 19, 20 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^(𝐶 + 1)) ↔ ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶))) |
22 | 9, 21 | mpbid 231 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ⊆ wss 3896 class class class wbr 5086 ‘cfv 6465 (class class class)co 7316 ℝcr 10949 1c1 10951 + caddc 10953 < clt 11088 ≤ cle 11089 ℤcz 12398 ℤ≥cuz 12661 ..^cfzo 13461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-n0 12313 df-z 12399 df-uz 12662 df-fz 13319 df-fzo 13462 |
This theorem is referenced by: psgnunilem5 19175 |
Copyright terms: Public domain | W3C validator |