| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzostep1 | Structured version Visualization version GIF version | ||
| Description: Two possibilities for a number one greater than a number in a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| fzostep1 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel1 13594 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) | |
| 2 | uzid 12784 | . . . 4 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ (ℤ≥‘𝐵)) | |
| 3 | peano2uz 12836 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐵) → (𝐵 + 1) ∈ (ℤ≥‘𝐵)) | |
| 4 | fzoss1 13623 | . . . 4 ⊢ ((𝐵 + 1) ∈ (ℤ≥‘𝐵) → ((𝐵 + 1)..^(𝐶 + 1)) ⊆ (𝐵..^(𝐶 + 1))) | |
| 5 | 1, 2, 3, 4 | 4syl 19 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐵 + 1)..^(𝐶 + 1)) ⊆ (𝐵..^(𝐶 + 1))) |
| 6 | 1z 12539 | . . . 4 ⊢ 1 ∈ ℤ | |
| 7 | fzoaddel 13654 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 1 ∈ ℤ) → (𝐴 + 1) ∈ ((𝐵 + 1)..^(𝐶 + 1))) | |
| 8 | 6, 7 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐴 + 1) ∈ ((𝐵 + 1)..^(𝐶 + 1))) |
| 9 | 5, 8 | sseldd 3944 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐴 + 1) ∈ (𝐵..^(𝐶 + 1))) |
| 10 | elfzoel2 13595 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) | |
| 11 | elfzolt3 13606 | . . . . 5 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 < 𝐶) | |
| 12 | zre 12509 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
| 13 | zre 12509 | . . . . . . 7 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ ℝ) | |
| 14 | ltle 11238 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 → 𝐵 ≤ 𝐶)) | |
| 15 | 12, 13, 14 | syl2an 596 | . . . . . 6 ⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 < 𝐶 → 𝐵 ≤ 𝐶)) |
| 16 | 1, 10, 15 | syl2anc 584 | . . . . 5 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵 < 𝐶 → 𝐵 ≤ 𝐶)) |
| 17 | 11, 16 | mpd 15 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ≤ 𝐶) |
| 18 | eluz2 12775 | . . . 4 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ≤ 𝐶)) | |
| 19 | 1, 10, 17, 18 | syl3anbrc 1344 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ (ℤ≥‘𝐵)) |
| 20 | fzosplitsni 13715 | . . 3 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) → ((𝐴 + 1) ∈ (𝐵..^(𝐶 + 1)) ↔ ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶))) | |
| 21 | 19, 20 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^(𝐶 + 1)) ↔ ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶))) |
| 22 | 9, 21 | mpbid 232 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 1c1 11045 + caddc 11047 < clt 11184 ≤ cle 11185 ℤcz 12505 ℤ≥cuz 12769 ..^cfzo 13591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 |
| This theorem is referenced by: psgnunilem5 19408 psdmul 22086 |
| Copyright terms: Public domain | W3C validator |