Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfzolt2 | Structured version Visualization version GIF version |
Description: A member in a half-open integer interval is less than the upper bound. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
elfzolt2 | ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 < 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoelz 13092 | . . . 4 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ ℤ) | |
2 | elfzoel1 13090 | . . . 4 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ) | |
3 | elfzoel2 13091 | . . . 4 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ) | |
4 | elfzo 13094 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) | |
5 | 1, 2, 3, 4 | syl3anc 1368 | . . 3 ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) |
6 | 5 | ibi 270 | . 2 ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁)) |
7 | 6 | simprd 499 | 1 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 < 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2111 class class class wbr 5035 (class class class)co 7155 < clt 10718 ≤ cle 10719 ℤcz 12025 ..^cfzo 13087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-n0 11940 df-z 12026 df-uz 12288 df-fz 12945 df-fzo 13088 |
This theorem is referenced by: elfzolt3 13102 elfzolt2b 13103 fzonel 13105 elfzouz2 13106 fzonnsub 13116 fzospliti 13123 fzodisj 13125 fzouzdisj 13127 fzodisjsn 13129 elfzo0 13132 elfzo1 13141 fzoaddel 13144 elincfzoext 13149 ssfzo12 13184 elfznelfzob 13197 modaddmodlo 13357 ccatrn 13995 swrds2 14354 fzomaxdiflem 14755 fzo0dvdseq 15729 bitsfzolem 15838 bitsfzo 15839 sadcaddlem 15861 sadaddlem 15870 sadasslem 15874 sadeq 15876 smuval2 15886 smupvallem 15887 smueqlem 15894 crth 16175 eulerthlem2 16179 hashgcdlem 16185 prmgaplem6 16452 znf1o 20324 iundisj 24253 tgcgr4 26429 clwlkclwwlklem2fv1 27884 iundisjf 30455 iundisjfi 30645 fzone1 30649 smattl 31273 smattr 31274 smatbl 31275 signsplypnf 32052 breprexplemc 32135 poimirlem17 35380 poimirlem20 35383 frlmvscadiccat 39772 elfzfzo 42303 elfzop1le2 42317 dvnmul 42979 iblspltprt 43009 itgspltprt 43015 stoweidlem3 43039 fourierdlem12 43155 fourierdlem50 43192 fourierdlem64 43206 fourierdlem79 43221 iccpartgt 44340 m1modmmod 45328 |
Copyright terms: Public domain | W3C validator |