| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzolt2 | Structured version Visualization version GIF version | ||
| Description: A member in a half-open integer interval is less than the upper bound. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfzolt2 | ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 < 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoelz 13554 | . . . 4 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ ℤ) | |
| 2 | elfzoel1 13552 | . . . 4 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ) | |
| 3 | elfzoel2 13553 | . . . 4 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ) | |
| 4 | elfzo 13556 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | . . 3 ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) |
| 6 | 5 | ibi 267 | . 2 ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁)) |
| 7 | 6 | simprd 495 | 1 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 < 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 class class class wbr 5086 (class class class)co 7341 < clt 11141 ≤ cle 11142 ℤcz 12463 ..^cfzo 13549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 |
| This theorem is referenced by: elfzolt3 13564 elfzolt2b 13565 elfzop1le2 13567 fzonel 13568 elfzouz2 13569 fzonnsub 13579 fzospliti 13586 fzodisj 13588 fzouzdisj 13590 fzodisjsn 13592 elfzo0 13595 elfzo1 13607 fzoaddel 13612 elincfzoext 13618 ssfzo12 13654 elfznelfzob 13669 fzone1 13679 modaddmodlo 13837 ccatrn 14492 swrds2 14842 fzomaxdiflem 15245 fzo0dvdseq 16229 bitsfzolem 16340 bitsfzo 16341 sadcaddlem 16363 sadaddlem 16372 sadasslem 16376 sadeq 16378 smuval2 16388 smupvallem 16389 smueqlem 16396 crth 16684 eulerthlem2 16688 hashgcdlem 16694 prmgaplem6 16963 chnccat 18527 znf1o 21483 iundisj 25471 tgcgr4 28504 clwlkclwwlklem2fv1 29967 iundisjf 32561 iundisjfi 32770 ply1degltdimlem 33627 ply1degltdim 33628 smattl 33803 smattr 33804 smatbl 33805 signsplypnf 34555 breprexplemc 34637 poimirlem17 37677 poimirlem20 37680 frlmvscadiccat 42539 elfzfzo 45318 dvnmul 45981 iblspltprt 46011 itgspltprt 46017 stoweidlem3 46041 fourierdlem12 46157 fourierdlem50 46194 fourierdlem64 46208 fourierdlem79 46223 m1modmmod 47389 mod2addne 47395 iccpartgt 47458 upgrimpthslem2 47939 gpgedgvtx1 48093 |
| Copyright terms: Public domain | W3C validator |