MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzolt2 Structured version   Visualization version   GIF version

Theorem elfzolt2 13629
Description: A member in a half-open integer interval is less than the upper bound. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
elfzolt2 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 < 𝑁)

Proof of Theorem elfzolt2
StepHypRef Expression
1 elfzoelz 13620 . . . 4 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ ℤ)
2 elfzoel1 13618 . . . 4 (𝐾 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ)
3 elfzoel2 13619 . . . 4 (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
4 elfzo 13622 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀𝐾𝐾 < 𝑁)))
51, 2, 3, 4syl3anc 1373 . . 3 (𝐾 ∈ (𝑀..^𝑁) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀𝐾𝐾 < 𝑁)))
65ibi 267 . 2 (𝐾 ∈ (𝑀..^𝑁) → (𝑀𝐾𝐾 < 𝑁))
76simprd 495 1 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 < 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5107  (class class class)co 7387   < clt 11208  cle 11209  cz 12529  ..^cfzo 13615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616
This theorem is referenced by:  elfzolt3  13630  elfzolt2b  13631  elfzop1le2  13633  fzonel  13634  elfzouz2  13635  fzonnsub  13645  fzospliti  13652  fzodisj  13654  fzouzdisj  13656  fzodisjsn  13658  elfzo0  13661  elfzo1  13673  fzoaddel  13678  elincfzoext  13684  ssfzo12  13720  elfznelfzob  13734  modaddmodlo  13900  ccatrn  14554  swrds2  14906  fzomaxdiflem  15309  fzo0dvdseq  16293  bitsfzolem  16404  bitsfzo  16405  sadcaddlem  16427  sadaddlem  16436  sadasslem  16440  sadeq  16442  smuval2  16452  smupvallem  16453  smueqlem  16460  crth  16748  eulerthlem2  16752  hashgcdlem  16758  prmgaplem6  17027  znf1o  21461  iundisj  25449  tgcgr4  28458  clwlkclwwlklem2fv1  29924  iundisjf  32518  iundisjfi  32719  fzone1  32723  ply1degltdimlem  33618  ply1degltdim  33619  smattl  33788  smattr  33789  smatbl  33790  signsplypnf  34541  breprexplemc  34623  poimirlem17  37631  poimirlem20  37634  frlmvscadiccat  42494  elfzfzo  45275  dvnmul  45941  iblspltprt  45971  itgspltprt  45977  stoweidlem3  46001  fourierdlem12  46117  fourierdlem50  46154  fourierdlem64  46168  fourierdlem79  46183  m1modmmod  47359  mod2addne  47365  iccpartgt  47428  upgrimpthslem2  47908  gpgedgvtx1  48053
  Copyright terms: Public domain W3C validator