MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzolt2 Structured version   Visualization version   GIF version

Theorem elfzolt2 13605
Description: A member in a half-open integer interval is less than the upper bound. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
elfzolt2 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 < 𝑁)

Proof of Theorem elfzolt2
StepHypRef Expression
1 elfzoelz 13596 . . . 4 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ ℤ)
2 elfzoel1 13594 . . . 4 (𝐾 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ)
3 elfzoel2 13595 . . . 4 (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
4 elfzo 13598 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀𝐾𝐾 < 𝑁)))
51, 2, 3, 4syl3anc 1373 . . 3 (𝐾 ∈ (𝑀..^𝑁) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀𝐾𝐾 < 𝑁)))
65ibi 267 . 2 (𝐾 ∈ (𝑀..^𝑁) → (𝑀𝐾𝐾 < 𝑁))
76simprd 495 1 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 < 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5102  (class class class)co 7369   < clt 11184  cle 11185  cz 12505  ..^cfzo 13591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592
This theorem is referenced by:  elfzolt3  13606  elfzolt2b  13607  elfzop1le2  13609  fzonel  13610  elfzouz2  13611  fzonnsub  13621  fzospliti  13628  fzodisj  13630  fzouzdisj  13632  fzodisjsn  13634  elfzo0  13637  elfzo1  13649  fzoaddel  13654  elincfzoext  13660  ssfzo12  13696  elfznelfzob  13710  modaddmodlo  13876  ccatrn  14530  swrds2  14882  fzomaxdiflem  15285  fzo0dvdseq  16269  bitsfzolem  16380  bitsfzo  16381  sadcaddlem  16403  sadaddlem  16412  sadasslem  16416  sadeq  16418  smuval2  16428  smupvallem  16429  smueqlem  16436  crth  16724  eulerthlem2  16728  hashgcdlem  16734  prmgaplem6  17003  znf1o  21437  iundisj  25425  tgcgr4  28434  clwlkclwwlklem2fv1  29897  iundisjf  32491  iundisjfi  32692  fzone1  32696  ply1degltdimlem  33591  ply1degltdim  33592  smattl  33761  smattr  33762  smatbl  33763  signsplypnf  34514  breprexplemc  34596  poimirlem17  37604  poimirlem20  37607  frlmvscadiccat  42467  elfzfzo  45248  dvnmul  45914  iblspltprt  45944  itgspltprt  45950  stoweidlem3  45974  fourierdlem12  46090  fourierdlem50  46127  fourierdlem64  46141  fourierdlem79  46156  m1modmmod  47332  mod2addne  47338  iccpartgt  47401  upgrimpthslem2  47881  gpgedgvtx1  48026
  Copyright terms: Public domain W3C validator