MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzolt2 Structured version   Visualization version   GIF version

Theorem elfzolt2 13636
Description: A member in a half-open integer interval is less than the upper bound. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
elfzolt2 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 < 𝑁)

Proof of Theorem elfzolt2
StepHypRef Expression
1 elfzoelz 13627 . . . 4 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ ℤ)
2 elfzoel1 13625 . . . 4 (𝐾 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ)
3 elfzoel2 13626 . . . 4 (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
4 elfzo 13629 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀𝐾𝐾 < 𝑁)))
51, 2, 3, 4syl3anc 1373 . . 3 (𝐾 ∈ (𝑀..^𝑁) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀𝐾𝐾 < 𝑁)))
65ibi 267 . 2 (𝐾 ∈ (𝑀..^𝑁) → (𝑀𝐾𝐾 < 𝑁))
76simprd 495 1 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 < 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5110  (class class class)co 7390   < clt 11215  cle 11216  cz 12536  ..^cfzo 13622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623
This theorem is referenced by:  elfzolt3  13637  elfzolt2b  13638  elfzop1le2  13640  fzonel  13641  elfzouz2  13642  fzonnsub  13652  fzospliti  13659  fzodisj  13661  fzouzdisj  13663  fzodisjsn  13665  elfzo0  13668  elfzo1  13680  fzoaddel  13685  elincfzoext  13691  ssfzo12  13727  elfznelfzob  13741  modaddmodlo  13907  ccatrn  14561  swrds2  14913  fzomaxdiflem  15316  fzo0dvdseq  16300  bitsfzolem  16411  bitsfzo  16412  sadcaddlem  16434  sadaddlem  16443  sadasslem  16447  sadeq  16449  smuval2  16459  smupvallem  16460  smueqlem  16467  crth  16755  eulerthlem2  16759  hashgcdlem  16765  prmgaplem6  17034  znf1o  21468  iundisj  25456  tgcgr4  28465  clwlkclwwlklem2fv1  29931  iundisjf  32525  iundisjfi  32726  fzone1  32730  ply1degltdimlem  33625  ply1degltdim  33626  smattl  33795  smattr  33796  smatbl  33797  signsplypnf  34548  breprexplemc  34630  poimirlem17  37638  poimirlem20  37641  frlmvscadiccat  42501  elfzfzo  45282  dvnmul  45948  iblspltprt  45978  itgspltprt  45984  stoweidlem3  46008  fourierdlem12  46124  fourierdlem50  46161  fourierdlem64  46175  fourierdlem79  46190  m1modmmod  47363  mod2addne  47369  iccpartgt  47432  upgrimpthslem2  47912  gpgedgvtx1  48057
  Copyright terms: Public domain W3C validator