Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfzolt2 | Structured version Visualization version GIF version |
Description: A member in a half-open integer interval is less than the upper bound. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
elfzolt2 | ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 < 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoelz 13316 | . . . 4 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ ℤ) | |
2 | elfzoel1 13314 | . . . 4 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ) | |
3 | elfzoel2 13315 | . . . 4 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ) | |
4 | elfzo 13318 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | . . 3 ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) |
6 | 5 | ibi 266 | . 2 ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁)) |
7 | 6 | simprd 495 | 1 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 < 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 < clt 10940 ≤ cle 10941 ℤcz 12249 ..^cfzo 13311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 |
This theorem is referenced by: elfzolt3 13326 elfzolt2b 13327 fzonel 13329 elfzouz2 13330 fzonnsub 13340 fzospliti 13347 fzodisj 13349 fzouzdisj 13351 fzodisjsn 13353 elfzo0 13356 elfzo1 13365 fzoaddel 13368 elincfzoext 13373 ssfzo12 13408 elfznelfzob 13421 modaddmodlo 13583 ccatrn 14222 swrds2 14581 fzomaxdiflem 14982 fzo0dvdseq 15960 bitsfzolem 16069 bitsfzo 16070 sadcaddlem 16092 sadaddlem 16101 sadasslem 16105 sadeq 16107 smuval2 16117 smupvallem 16118 smueqlem 16125 crth 16407 eulerthlem2 16411 hashgcdlem 16417 prmgaplem6 16685 znf1o 20671 iundisj 24617 tgcgr4 26796 clwlkclwwlklem2fv1 28260 iundisjf 30829 iundisjfi 31019 fzone1 31023 smattl 31650 smattr 31651 smatbl 31652 signsplypnf 32429 breprexplemc 32512 poimirlem17 35721 poimirlem20 35724 frlmvscadiccat 40163 elfzfzo 42704 elfzop1le2 42718 dvnmul 43374 iblspltprt 43404 itgspltprt 43410 stoweidlem3 43434 fourierdlem12 43550 fourierdlem50 43587 fourierdlem64 43601 fourierdlem79 43616 iccpartgt 44767 m1modmmod 45755 |
Copyright terms: Public domain | W3C validator |