MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzolt2 Structured version   Visualization version   GIF version

Theorem elfzolt2 13645
Description: A member in a half-open integer interval is less than the upper bound. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
elfzolt2 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 < 𝑁)

Proof of Theorem elfzolt2
StepHypRef Expression
1 elfzoelz 13636 . . . 4 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ ℤ)
2 elfzoel1 13634 . . . 4 (𝐾 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ)
3 elfzoel2 13635 . . . 4 (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
4 elfzo 13638 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀𝐾𝐾 < 𝑁)))
51, 2, 3, 4syl3anc 1369 . . 3 (𝐾 ∈ (𝑀..^𝑁) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀𝐾𝐾 < 𝑁)))
65ibi 266 . 2 (𝐾 ∈ (𝑀..^𝑁) → (𝑀𝐾𝐾 < 𝑁))
76simprd 494 1 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 < 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2104   class class class wbr 5147  (class class class)co 7411   < clt 11252  cle 11253  cz 12562  ..^cfzo 13631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-fzo 13632
This theorem is referenced by:  elfzolt3  13646  elfzolt2b  13647  elfzop1le2  13649  fzonel  13650  elfzouz2  13651  fzonnsub  13661  fzospliti  13668  fzodisj  13670  fzouzdisj  13672  fzodisjsn  13674  elfzo0  13677  elfzo1  13686  fzoaddel  13689  elincfzoext  13694  ssfzo12  13729  elfznelfzob  13742  modaddmodlo  13904  ccatrn  14543  swrds2  14895  fzomaxdiflem  15293  fzo0dvdseq  16270  bitsfzolem  16379  bitsfzo  16380  sadcaddlem  16402  sadaddlem  16411  sadasslem  16415  sadeq  16417  smuval2  16427  smupvallem  16428  smueqlem  16435  crth  16715  eulerthlem2  16719  hashgcdlem  16725  prmgaplem6  16993  znf1o  21326  iundisj  25297  tgcgr4  28049  clwlkclwwlklem2fv1  29515  iundisjf  32087  iundisjfi  32274  fzone1  32278  ply1degltdimlem  32995  ply1degltdim  32996  smattl  33076  smattr  33077  smatbl  33078  signsplypnf  33859  breprexplemc  33942  poimirlem17  36808  poimirlem20  36811  frlmvscadiccat  41386  elfzfzo  44284  dvnmul  44957  iblspltprt  44987  itgspltprt  44993  stoweidlem3  45017  fourierdlem12  45133  fourierdlem50  45170  fourierdlem64  45184  fourierdlem79  45199  iccpartgt  46393  m1modmmod  47294
  Copyright terms: Public domain W3C validator