MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzosubel3 Structured version   Visualization version   GIF version

Theorem fzosubel3 13663
Description: Membership in a translated half-open integer range when the original range is zero-based. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
fzosubel3 ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → (𝐴𝐵) ∈ (0..^𝐷))

Proof of Theorem fzosubel3
StepHypRef Expression
1 simpl 482 . . 3 ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → 𝐴 ∈ (𝐵..^(𝐵 + 𝐷)))
2 elfzoel1 13594 . . . . . . 7 (𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) → 𝐵 ∈ ℤ)
32adantr 480 . . . . . 6 ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → 𝐵 ∈ ℤ)
43zcnd 12615 . . . . 5 ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → 𝐵 ∈ ℂ)
54addridd 11350 . . . 4 ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → (𝐵 + 0) = 𝐵)
65oveq1d 7384 . . 3 ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → ((𝐵 + 0)..^(𝐵 + 𝐷)) = (𝐵..^(𝐵 + 𝐷)))
71, 6eleqtrrd 2831 . 2 ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → 𝐴 ∈ ((𝐵 + 0)..^(𝐵 + 𝐷)))
8 0zd 12517 . 2 ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → 0 ∈ ℤ)
9 simpr 484 . 2 ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℤ)
10 fzosubel2 13662 . 2 ((𝐴 ∈ ((𝐵 + 0)..^(𝐵 + 𝐷)) ∧ (𝐵 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴𝐵) ∈ (0..^𝐷))
117, 3, 8, 9, 10syl13anc 1374 1 ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → (𝐴𝐵) ∈ (0..^𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  (class class class)co 7369  0cc0 11044   + caddc 11047  cmin 11381  cz 12505  ..^cfzo 13591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592
This theorem is referenced by:  eluzgtdifelfzo  13664  ccatass  14529  swrdfv2  14602  ccatswrd  14609  revccat  14707  ccatco  14777  clwwlkccatlem  29891  ccatf1  32843  swrdrn3  32850  cycpmco2lem6  33061  fargshiftfo  47416  gpgedgvtx1  48026
  Copyright terms: Public domain W3C validator