MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elincfzoext Structured version   Visualization version   GIF version

Theorem elincfzoext 13096
Description: Membership of an increased integer in a correspondingly extended half-open range of integers. (Contributed by AV, 30-Apr-2020.)
Assertion
Ref Expression
elincfzoext ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) ∈ (𝑀..^(𝑁 + 𝐼)))

Proof of Theorem elincfzoext
StepHypRef Expression
1 elfzole1 13047 . . . 4 (𝑍 ∈ (𝑀..^𝑁) → 𝑀𝑍)
2 elfzoelz 13039 . . . . . . . . 9 (𝑍 ∈ (𝑀..^𝑁) → 𝑍 ∈ ℤ)
32zred 12088 . . . . . . . 8 (𝑍 ∈ (𝑀..^𝑁) → 𝑍 ∈ ℝ)
43adantr 483 . . . . . . 7 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝑀𝑍) → 𝑍 ∈ ℝ)
5 nn0addge1 11944 . . . . . . 7 ((𝑍 ∈ ℝ ∧ 𝐼 ∈ ℕ0) → 𝑍 ≤ (𝑍 + 𝐼))
64, 5sylan 582 . . . . . 6 (((𝑍 ∈ (𝑀..^𝑁) ∧ 𝑀𝑍) ∧ 𝐼 ∈ ℕ0) → 𝑍 ≤ (𝑍 + 𝐼))
7 elfzoel1 13037 . . . . . . . . . . . 12 (𝑍 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ)
87zred 12088 . . . . . . . . . . 11 (𝑍 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℝ)
98adantr 483 . . . . . . . . . 10 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑀 ∈ ℝ)
103adantr 483 . . . . . . . . . 10 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ ℝ)
11 nn0re 11907 . . . . . . . . . . . 12 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
1211adantl 484 . . . . . . . . . . 11 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℝ)
1310, 12readdcld 10670 . . . . . . . . . 10 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) ∈ ℝ)
14 letr 10734 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑍 ∈ ℝ ∧ (𝑍 + 𝐼) ∈ ℝ) → ((𝑀𝑍𝑍 ≤ (𝑍 + 𝐼)) → 𝑀 ≤ (𝑍 + 𝐼)))
159, 10, 13, 14syl3anc 1367 . . . . . . . . 9 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → ((𝑀𝑍𝑍 ≤ (𝑍 + 𝐼)) → 𝑀 ≤ (𝑍 + 𝐼)))
1615exp4b 433 . . . . . . . 8 (𝑍 ∈ (𝑀..^𝑁) → (𝐼 ∈ ℕ0 → (𝑀𝑍 → (𝑍 ≤ (𝑍 + 𝐼) → 𝑀 ≤ (𝑍 + 𝐼)))))
1716com23 86 . . . . . . 7 (𝑍 ∈ (𝑀..^𝑁) → (𝑀𝑍 → (𝐼 ∈ ℕ0 → (𝑍 ≤ (𝑍 + 𝐼) → 𝑀 ≤ (𝑍 + 𝐼)))))
1817imp31 420 . . . . . 6 (((𝑍 ∈ (𝑀..^𝑁) ∧ 𝑀𝑍) ∧ 𝐼 ∈ ℕ0) → (𝑍 ≤ (𝑍 + 𝐼) → 𝑀 ≤ (𝑍 + 𝐼)))
196, 18mpd 15 . . . . 5 (((𝑍 ∈ (𝑀..^𝑁) ∧ 𝑀𝑍) ∧ 𝐼 ∈ ℕ0) → 𝑀 ≤ (𝑍 + 𝐼))
2019exp31 422 . . . 4 (𝑍 ∈ (𝑀..^𝑁) → (𝑀𝑍 → (𝐼 ∈ ℕ0𝑀 ≤ (𝑍 + 𝐼))))
211, 20mpd 15 . . 3 (𝑍 ∈ (𝑀..^𝑁) → (𝐼 ∈ ℕ0𝑀 ≤ (𝑍 + 𝐼)))
2221imp 409 . 2 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑀 ≤ (𝑍 + 𝐼))
23 elfzoel2 13038 . . . . 5 (𝑍 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
2423zred 12088 . . . 4 (𝑍 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℝ)
2524adantr 483 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
26 elfzolt2 13048 . . . 4 (𝑍 ∈ (𝑀..^𝑁) → 𝑍 < 𝑁)
2726adantr 483 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 < 𝑁)
2810, 25, 12, 27ltadd1dd 11251 . 2 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) < (𝑁 + 𝐼))
292adantr 483 . . . 4 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ ℤ)
30 nn0z 12006 . . . . 5 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
3130adantl 484 . . . 4 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℤ)
3229, 31zaddcld 12092 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) ∈ ℤ)
337adantr 483 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑀 ∈ ℤ)
3423adantr 483 . . . 4 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℤ)
3534, 31zaddcld 12092 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑁 + 𝐼) ∈ ℤ)
36 elfzo 13041 . . 3 (((𝑍 + 𝐼) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑁 + 𝐼) ∈ ℤ) → ((𝑍 + 𝐼) ∈ (𝑀..^(𝑁 + 𝐼)) ↔ (𝑀 ≤ (𝑍 + 𝐼) ∧ (𝑍 + 𝐼) < (𝑁 + 𝐼))))
3732, 33, 35, 36syl3anc 1367 . 2 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → ((𝑍 + 𝐼) ∈ (𝑀..^(𝑁 + 𝐼)) ↔ (𝑀 ≤ (𝑍 + 𝐼) ∧ (𝑍 + 𝐼) < (𝑁 + 𝐼))))
3822, 28, 37mpbir2and 711 1 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) ∈ (𝑀..^(𝑁 + 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2114   class class class wbr 5066  (class class class)co 7156  cr 10536   + caddc 10540   < clt 10675  cle 10676  0cn0 11898  cz 11982  ..^cfzo 13034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035
This theorem is referenced by:  ccatalpha  13947
  Copyright terms: Public domain W3C validator