MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elincfzoext Structured version   Visualization version   GIF version

Theorem elincfzoext 13687
Description: Membership of an increased integer in a correspondingly extended half-open range of integers. (Contributed by AV, 30-Apr-2020.)
Assertion
Ref Expression
elincfzoext ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) ∈ (𝑀..^(𝑁 + 𝐼)))

Proof of Theorem elincfzoext
StepHypRef Expression
1 elfzole1 13637 . . . 4 (𝑍 ∈ (𝑀..^𝑁) → 𝑀𝑍)
2 elfzoelz 13629 . . . . . . . . 9 (𝑍 ∈ (𝑀..^𝑁) → 𝑍 ∈ ℤ)
32zred 12663 . . . . . . . 8 (𝑍 ∈ (𝑀..^𝑁) → 𝑍 ∈ ℝ)
43adantr 480 . . . . . . 7 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝑀𝑍) → 𝑍 ∈ ℝ)
5 nn0addge1 12515 . . . . . . 7 ((𝑍 ∈ ℝ ∧ 𝐼 ∈ ℕ0) → 𝑍 ≤ (𝑍 + 𝐼))
64, 5sylan 579 . . . . . 6 (((𝑍 ∈ (𝑀..^𝑁) ∧ 𝑀𝑍) ∧ 𝐼 ∈ ℕ0) → 𝑍 ≤ (𝑍 + 𝐼))
7 elfzoel1 13627 . . . . . . . . . . . 12 (𝑍 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ)
87zred 12663 . . . . . . . . . . 11 (𝑍 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℝ)
98adantr 480 . . . . . . . . . 10 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑀 ∈ ℝ)
103adantr 480 . . . . . . . . . 10 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ ℝ)
11 nn0re 12478 . . . . . . . . . . . 12 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
1211adantl 481 . . . . . . . . . . 11 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℝ)
1310, 12readdcld 11240 . . . . . . . . . 10 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) ∈ ℝ)
14 letr 11305 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑍 ∈ ℝ ∧ (𝑍 + 𝐼) ∈ ℝ) → ((𝑀𝑍𝑍 ≤ (𝑍 + 𝐼)) → 𝑀 ≤ (𝑍 + 𝐼)))
159, 10, 13, 14syl3anc 1368 . . . . . . . . 9 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → ((𝑀𝑍𝑍 ≤ (𝑍 + 𝐼)) → 𝑀 ≤ (𝑍 + 𝐼)))
1615exp4b 430 . . . . . . . 8 (𝑍 ∈ (𝑀..^𝑁) → (𝐼 ∈ ℕ0 → (𝑀𝑍 → (𝑍 ≤ (𝑍 + 𝐼) → 𝑀 ≤ (𝑍 + 𝐼)))))
1716com23 86 . . . . . . 7 (𝑍 ∈ (𝑀..^𝑁) → (𝑀𝑍 → (𝐼 ∈ ℕ0 → (𝑍 ≤ (𝑍 + 𝐼) → 𝑀 ≤ (𝑍 + 𝐼)))))
1817imp31 417 . . . . . 6 (((𝑍 ∈ (𝑀..^𝑁) ∧ 𝑀𝑍) ∧ 𝐼 ∈ ℕ0) → (𝑍 ≤ (𝑍 + 𝐼) → 𝑀 ≤ (𝑍 + 𝐼)))
196, 18mpd 15 . . . . 5 (((𝑍 ∈ (𝑀..^𝑁) ∧ 𝑀𝑍) ∧ 𝐼 ∈ ℕ0) → 𝑀 ≤ (𝑍 + 𝐼))
2019exp31 419 . . . 4 (𝑍 ∈ (𝑀..^𝑁) → (𝑀𝑍 → (𝐼 ∈ ℕ0𝑀 ≤ (𝑍 + 𝐼))))
211, 20mpd 15 . . 3 (𝑍 ∈ (𝑀..^𝑁) → (𝐼 ∈ ℕ0𝑀 ≤ (𝑍 + 𝐼)))
2221imp 406 . 2 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑀 ≤ (𝑍 + 𝐼))
23 elfzoel2 13628 . . . . 5 (𝑍 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
2423zred 12663 . . . 4 (𝑍 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℝ)
2524adantr 480 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
26 elfzolt2 13638 . . . 4 (𝑍 ∈ (𝑀..^𝑁) → 𝑍 < 𝑁)
2726adantr 480 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 < 𝑁)
2810, 25, 12, 27ltadd1dd 11822 . 2 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) < (𝑁 + 𝐼))
292adantr 480 . . . 4 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ ℤ)
30 nn0z 12580 . . . . 5 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
3130adantl 481 . . . 4 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℤ)
3229, 31zaddcld 12667 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) ∈ ℤ)
337adantr 480 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑀 ∈ ℤ)
3423adantr 480 . . . 4 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℤ)
3534, 31zaddcld 12667 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑁 + 𝐼) ∈ ℤ)
36 elfzo 13631 . . 3 (((𝑍 + 𝐼) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑁 + 𝐼) ∈ ℤ) → ((𝑍 + 𝐼) ∈ (𝑀..^(𝑁 + 𝐼)) ↔ (𝑀 ≤ (𝑍 + 𝐼) ∧ (𝑍 + 𝐼) < (𝑁 + 𝐼))))
3732, 33, 35, 36syl3anc 1368 . 2 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → ((𝑍 + 𝐼) ∈ (𝑀..^(𝑁 + 𝐼)) ↔ (𝑀 ≤ (𝑍 + 𝐼) ∧ (𝑍 + 𝐼) < (𝑁 + 𝐼))))
3822, 28, 37mpbir2and 710 1 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) ∈ (𝑀..^(𝑁 + 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2098   class class class wbr 5138  (class class class)co 7401  cr 11105   + caddc 11109   < clt 11245  cle 11246  0cn0 12469  cz 12555  ..^cfzo 13624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-n0 12470  df-z 12556  df-uz 12820  df-fz 13482  df-fzo 13625
This theorem is referenced by:  ccatalpha  14540
  Copyright terms: Public domain W3C validator