MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elincfzoext Structured version   Visualization version   GIF version

Theorem elincfzoext 13640
Description: Membership of an increased integer in a correspondingly extended half-open range of integers. (Contributed by AV, 30-Apr-2020.)
Assertion
Ref Expression
elincfzoext ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) ∈ (𝑀..^(𝑁 + 𝐼)))

Proof of Theorem elincfzoext
StepHypRef Expression
1 elfzole1 13590 . . . 4 (𝑍 ∈ (𝑀..^𝑁) → 𝑀𝑍)
2 elfzoelz 13582 . . . . . . . . 9 (𝑍 ∈ (𝑀..^𝑁) → 𝑍 ∈ ℤ)
32zred 12616 . . . . . . . 8 (𝑍 ∈ (𝑀..^𝑁) → 𝑍 ∈ ℝ)
43adantr 481 . . . . . . 7 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝑀𝑍) → 𝑍 ∈ ℝ)
5 nn0addge1 12468 . . . . . . 7 ((𝑍 ∈ ℝ ∧ 𝐼 ∈ ℕ0) → 𝑍 ≤ (𝑍 + 𝐼))
64, 5sylan 580 . . . . . 6 (((𝑍 ∈ (𝑀..^𝑁) ∧ 𝑀𝑍) ∧ 𝐼 ∈ ℕ0) → 𝑍 ≤ (𝑍 + 𝐼))
7 elfzoel1 13580 . . . . . . . . . . . 12 (𝑍 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ)
87zred 12616 . . . . . . . . . . 11 (𝑍 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℝ)
98adantr 481 . . . . . . . . . 10 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑀 ∈ ℝ)
103adantr 481 . . . . . . . . . 10 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ ℝ)
11 nn0re 12431 . . . . . . . . . . . 12 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
1211adantl 482 . . . . . . . . . . 11 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℝ)
1310, 12readdcld 11193 . . . . . . . . . 10 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) ∈ ℝ)
14 letr 11258 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑍 ∈ ℝ ∧ (𝑍 + 𝐼) ∈ ℝ) → ((𝑀𝑍𝑍 ≤ (𝑍 + 𝐼)) → 𝑀 ≤ (𝑍 + 𝐼)))
159, 10, 13, 14syl3anc 1371 . . . . . . . . 9 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → ((𝑀𝑍𝑍 ≤ (𝑍 + 𝐼)) → 𝑀 ≤ (𝑍 + 𝐼)))
1615exp4b 431 . . . . . . . 8 (𝑍 ∈ (𝑀..^𝑁) → (𝐼 ∈ ℕ0 → (𝑀𝑍 → (𝑍 ≤ (𝑍 + 𝐼) → 𝑀 ≤ (𝑍 + 𝐼)))))
1716com23 86 . . . . . . 7 (𝑍 ∈ (𝑀..^𝑁) → (𝑀𝑍 → (𝐼 ∈ ℕ0 → (𝑍 ≤ (𝑍 + 𝐼) → 𝑀 ≤ (𝑍 + 𝐼)))))
1817imp31 418 . . . . . 6 (((𝑍 ∈ (𝑀..^𝑁) ∧ 𝑀𝑍) ∧ 𝐼 ∈ ℕ0) → (𝑍 ≤ (𝑍 + 𝐼) → 𝑀 ≤ (𝑍 + 𝐼)))
196, 18mpd 15 . . . . 5 (((𝑍 ∈ (𝑀..^𝑁) ∧ 𝑀𝑍) ∧ 𝐼 ∈ ℕ0) → 𝑀 ≤ (𝑍 + 𝐼))
2019exp31 420 . . . 4 (𝑍 ∈ (𝑀..^𝑁) → (𝑀𝑍 → (𝐼 ∈ ℕ0𝑀 ≤ (𝑍 + 𝐼))))
211, 20mpd 15 . . 3 (𝑍 ∈ (𝑀..^𝑁) → (𝐼 ∈ ℕ0𝑀 ≤ (𝑍 + 𝐼)))
2221imp 407 . 2 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑀 ≤ (𝑍 + 𝐼))
23 elfzoel2 13581 . . . . 5 (𝑍 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
2423zred 12616 . . . 4 (𝑍 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℝ)
2524adantr 481 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
26 elfzolt2 13591 . . . 4 (𝑍 ∈ (𝑀..^𝑁) → 𝑍 < 𝑁)
2726adantr 481 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 < 𝑁)
2810, 25, 12, 27ltadd1dd 11775 . 2 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) < (𝑁 + 𝐼))
292adantr 481 . . . 4 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ ℤ)
30 nn0z 12533 . . . . 5 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
3130adantl 482 . . . 4 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℤ)
3229, 31zaddcld 12620 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) ∈ ℤ)
337adantr 481 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑀 ∈ ℤ)
3423adantr 481 . . . 4 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℤ)
3534, 31zaddcld 12620 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑁 + 𝐼) ∈ ℤ)
36 elfzo 13584 . . 3 (((𝑍 + 𝐼) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑁 + 𝐼) ∈ ℤ) → ((𝑍 + 𝐼) ∈ (𝑀..^(𝑁 + 𝐼)) ↔ (𝑀 ≤ (𝑍 + 𝐼) ∧ (𝑍 + 𝐼) < (𝑁 + 𝐼))))
3732, 33, 35, 36syl3anc 1371 . 2 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → ((𝑍 + 𝐼) ∈ (𝑀..^(𝑁 + 𝐼)) ↔ (𝑀 ≤ (𝑍 + 𝐼) ∧ (𝑍 + 𝐼) < (𝑁 + 𝐼))))
3822, 28, 37mpbir2and 711 1 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) ∈ (𝑀..^(𝑁 + 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106   class class class wbr 5110  (class class class)co 7362  cr 11059   + caddc 11063   < clt 11198  cle 11199  0cn0 12422  cz 12508  ..^cfzo 13577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-nn 12163  df-n0 12423  df-z 12509  df-uz 12773  df-fz 13435  df-fzo 13578
This theorem is referenced by:  ccatalpha  14493
  Copyright terms: Public domain W3C validator