MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elincfzoext Structured version   Visualization version   GIF version

Theorem elincfzoext 13774
Description: Membership of an increased integer in a correspondingly extended half-open range of integers. (Contributed by AV, 30-Apr-2020.)
Assertion
Ref Expression
elincfzoext ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) ∈ (𝑀..^(𝑁 + 𝐼)))

Proof of Theorem elincfzoext
StepHypRef Expression
1 elfzole1 13724 . . . 4 (𝑍 ∈ (𝑀..^𝑁) → 𝑀𝑍)
2 elfzoelz 13716 . . . . . . . . 9 (𝑍 ∈ (𝑀..^𝑁) → 𝑍 ∈ ℤ)
32zred 12747 . . . . . . . 8 (𝑍 ∈ (𝑀..^𝑁) → 𝑍 ∈ ℝ)
43adantr 480 . . . . . . 7 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝑀𝑍) → 𝑍 ∈ ℝ)
5 nn0addge1 12599 . . . . . . 7 ((𝑍 ∈ ℝ ∧ 𝐼 ∈ ℕ0) → 𝑍 ≤ (𝑍 + 𝐼))
64, 5sylan 579 . . . . . 6 (((𝑍 ∈ (𝑀..^𝑁) ∧ 𝑀𝑍) ∧ 𝐼 ∈ ℕ0) → 𝑍 ≤ (𝑍 + 𝐼))
7 elfzoel1 13714 . . . . . . . . . . . 12 (𝑍 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ)
87zred 12747 . . . . . . . . . . 11 (𝑍 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℝ)
98adantr 480 . . . . . . . . . 10 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑀 ∈ ℝ)
103adantr 480 . . . . . . . . . 10 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ ℝ)
11 nn0re 12562 . . . . . . . . . . . 12 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
1211adantl 481 . . . . . . . . . . 11 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℝ)
1310, 12readdcld 11319 . . . . . . . . . 10 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) ∈ ℝ)
14 letr 11384 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑍 ∈ ℝ ∧ (𝑍 + 𝐼) ∈ ℝ) → ((𝑀𝑍𝑍 ≤ (𝑍 + 𝐼)) → 𝑀 ≤ (𝑍 + 𝐼)))
159, 10, 13, 14syl3anc 1371 . . . . . . . . 9 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → ((𝑀𝑍𝑍 ≤ (𝑍 + 𝐼)) → 𝑀 ≤ (𝑍 + 𝐼)))
1615exp4b 430 . . . . . . . 8 (𝑍 ∈ (𝑀..^𝑁) → (𝐼 ∈ ℕ0 → (𝑀𝑍 → (𝑍 ≤ (𝑍 + 𝐼) → 𝑀 ≤ (𝑍 + 𝐼)))))
1716com23 86 . . . . . . 7 (𝑍 ∈ (𝑀..^𝑁) → (𝑀𝑍 → (𝐼 ∈ ℕ0 → (𝑍 ≤ (𝑍 + 𝐼) → 𝑀 ≤ (𝑍 + 𝐼)))))
1817imp31 417 . . . . . 6 (((𝑍 ∈ (𝑀..^𝑁) ∧ 𝑀𝑍) ∧ 𝐼 ∈ ℕ0) → (𝑍 ≤ (𝑍 + 𝐼) → 𝑀 ≤ (𝑍 + 𝐼)))
196, 18mpd 15 . . . . 5 (((𝑍 ∈ (𝑀..^𝑁) ∧ 𝑀𝑍) ∧ 𝐼 ∈ ℕ0) → 𝑀 ≤ (𝑍 + 𝐼))
2019exp31 419 . . . 4 (𝑍 ∈ (𝑀..^𝑁) → (𝑀𝑍 → (𝐼 ∈ ℕ0𝑀 ≤ (𝑍 + 𝐼))))
211, 20mpd 15 . . 3 (𝑍 ∈ (𝑀..^𝑁) → (𝐼 ∈ ℕ0𝑀 ≤ (𝑍 + 𝐼)))
2221imp 406 . 2 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑀 ≤ (𝑍 + 𝐼))
23 elfzoel2 13715 . . . . 5 (𝑍 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
2423zred 12747 . . . 4 (𝑍 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℝ)
2524adantr 480 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
26 elfzolt2 13725 . . . 4 (𝑍 ∈ (𝑀..^𝑁) → 𝑍 < 𝑁)
2726adantr 480 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 < 𝑁)
2810, 25, 12, 27ltadd1dd 11901 . 2 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) < (𝑁 + 𝐼))
292adantr 480 . . . 4 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ ℤ)
30 nn0z 12664 . . . . 5 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
3130adantl 481 . . . 4 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℤ)
3229, 31zaddcld 12751 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) ∈ ℤ)
337adantr 480 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑀 ∈ ℤ)
3423adantr 480 . . . 4 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℤ)
3534, 31zaddcld 12751 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑁 + 𝐼) ∈ ℤ)
36 elfzo 13718 . . 3 (((𝑍 + 𝐼) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑁 + 𝐼) ∈ ℤ) → ((𝑍 + 𝐼) ∈ (𝑀..^(𝑁 + 𝐼)) ↔ (𝑀 ≤ (𝑍 + 𝐼) ∧ (𝑍 + 𝐼) < (𝑁 + 𝐼))))
3732, 33, 35, 36syl3anc 1371 . 2 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → ((𝑍 + 𝐼) ∈ (𝑀..^(𝑁 + 𝐼)) ↔ (𝑀 ≤ (𝑍 + 𝐼) ∧ (𝑍 + 𝐼) < (𝑁 + 𝐼))))
3822, 28, 37mpbir2and 712 1 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) ∈ (𝑀..^(𝑁 + 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108   class class class wbr 5166  (class class class)co 7448  cr 11183   + caddc 11187   < clt 11324  cle 11325  0cn0 12553  cz 12639  ..^cfzo 13711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712
This theorem is referenced by:  ccatalpha  14641
  Copyright terms: Public domain W3C validator