MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzomaxdiflem Structured version   Visualization version   GIF version

Theorem fzomaxdiflem 15339
Description: Lemma for fzomaxdif 15340. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
fzomaxdiflem (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (abs‘(𝐵𝐴)) ∈ (0..^(𝐷𝐶)))

Proof of Theorem fzomaxdiflem
StepHypRef Expression
1 elfzoelz 13677 . . . . . 6 (𝐵 ∈ (𝐶..^𝐷) → 𝐵 ∈ ℤ)
21adantl 480 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐵 ∈ ℤ)
3 elfzoelz 13677 . . . . . 6 (𝐴 ∈ (𝐶..^𝐷) → 𝐴 ∈ ℤ)
43adantr 479 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐴 ∈ ℤ)
52, 4zsubcld 12714 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐵𝐴) ∈ ℤ)
65zred 12709 . . 3 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐵𝐴) ∈ ℝ)
72zred 12709 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐵 ∈ ℝ)
84zred 12709 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐴 ∈ ℝ)
97, 8subge0d 11842 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (0 ≤ (𝐵𝐴) ↔ 𝐴𝐵))
109biimpar 476 . . 3 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → 0 ≤ (𝐵𝐴))
11 absid 15293 . . 3 (((𝐵𝐴) ∈ ℝ ∧ 0 ≤ (𝐵𝐴)) → (abs‘(𝐵𝐴)) = (𝐵𝐴))
126, 10, 11syl2an2r 683 . 2 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (abs‘(𝐵𝐴)) = (𝐵𝐴))
13 elfzoel1 13675 . . . . . . . 8 (𝐵 ∈ (𝐶..^𝐷) → 𝐶 ∈ ℤ)
1413adantl 480 . . . . . . 7 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐶 ∈ ℤ)
1514zred 12709 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐶 ∈ ℝ)
167, 15resubcld 11680 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐵𝐶) ∈ ℝ)
17 elfzoel2 13676 . . . . . . . 8 (𝐵 ∈ (𝐶..^𝐷) → 𝐷 ∈ ℤ)
1817adantl 480 . . . . . . 7 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐷 ∈ ℤ)
1918, 14zsubcld 12714 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐷𝐶) ∈ ℤ)
2019zred 12709 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐷𝐶) ∈ ℝ)
21 elfzole1 13685 . . . . . . 7 (𝐴 ∈ (𝐶..^𝐷) → 𝐶𝐴)
2221adantr 479 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐶𝐴)
2315, 8, 7, 22lesub2dd 11869 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐵𝐴) ≤ (𝐵𝐶))
2418zred 12709 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐷 ∈ ℝ)
25 elfzolt2 13686 . . . . . . 7 (𝐵 ∈ (𝐶..^𝐷) → 𝐵 < 𝐷)
2625adantl 480 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐵 < 𝐷)
277, 24, 15, 26ltsub1dd 11864 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐵𝐶) < (𝐷𝐶))
286, 16, 20, 23, 27lelttrd 11410 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐵𝐴) < (𝐷𝐶))
2928adantr 479 . . 3 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (𝐵𝐴) < (𝐷𝐶))
30 0zd 12613 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 0 ∈ ℤ)
31 elfzo 13679 . . . . 5 (((𝐵𝐴) ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝐷𝐶) ∈ ℤ) → ((𝐵𝐴) ∈ (0..^(𝐷𝐶)) ↔ (0 ≤ (𝐵𝐴) ∧ (𝐵𝐴) < (𝐷𝐶))))
325, 30, 19, 31syl3anc 1368 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐵𝐴) ∈ (0..^(𝐷𝐶)) ↔ (0 ≤ (𝐵𝐴) ∧ (𝐵𝐴) < (𝐷𝐶))))
3332adantr 479 . . 3 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → ((𝐵𝐴) ∈ (0..^(𝐷𝐶)) ↔ (0 ≤ (𝐵𝐴) ∧ (𝐵𝐴) < (𝐷𝐶))))
3410, 29, 33mpbir2and 711 . 2 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (𝐵𝐴) ∈ (0..^(𝐷𝐶)))
3512, 34eqeltrd 2826 1 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (abs‘(𝐵𝐴)) ∈ (0..^(𝐷𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099   class class class wbr 5143  cfv 6543  (class class class)co 7413  cr 11145  0cc0 11146   < clt 11286  cle 11287  cmin 11482  cz 12601  ..^cfzo 13672  abscabs 15231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8964  df-dom 8965  df-sdom 8966  df-sup 9475  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12256  df-2 12318  df-3 12319  df-n0 12516  df-z 12602  df-uz 12866  df-rp 13020  df-fz 13530  df-fzo 13673  df-seq 14013  df-exp 14073  df-cj 15096  df-re 15097  df-im 15098  df-sqrt 15232  df-abs 15233
This theorem is referenced by:  fzomaxdif  15340
  Copyright terms: Public domain W3C validator