Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fdvposle | Structured version Visualization version GIF version |
Description: Functions with a nonnegative derivative, i.e. monotonously growing functions, preserve ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
Ref | Expression |
---|---|
fdvposlt.d | ⊢ 𝐸 = (𝐶(,)𝐷) |
fdvposlt.a | ⊢ (𝜑 → 𝐴 ∈ 𝐸) |
fdvposlt.b | ⊢ (𝜑 → 𝐵 ∈ 𝐸) |
fdvposlt.f | ⊢ (𝜑 → 𝐹:𝐸⟶ℝ) |
fdvposlt.c | ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℝ)) |
fdvposle.le | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
fdvposle.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 ≤ ((ℝ D 𝐹)‘𝑥)) |
Ref | Expression |
---|---|
fdvposle | ⊢ (𝜑 → (𝐹‘𝐴) ≤ (𝐹‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioossicc 13094 | . . . . . 6 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
3 | ioombl 24634 | . . . . . 6 ⊢ (𝐴(,)𝐵) ∈ dom vol | |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐴(,)𝐵) ∈ dom vol) |
5 | fdvposlt.c | . . . . . . . 8 ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℝ)) | |
6 | cncff 23962 | . . . . . . . 8 ⊢ ((ℝ D 𝐹) ∈ (𝐸–cn→ℝ) → (ℝ D 𝐹):𝐸⟶ℝ) | |
7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (ℝ D 𝐹):𝐸⟶ℝ) |
8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (ℝ D 𝐹):𝐸⟶ℝ) |
9 | fdvposlt.d | . . . . . . . 8 ⊢ 𝐸 = (𝐶(,)𝐷) | |
10 | fdvposlt.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝐸) | |
11 | fdvposlt.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ 𝐸) | |
12 | 9, 10, 11 | fct2relem 32477 | . . . . . . 7 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸) |
13 | 12 | sselda 3917 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ 𝐸) |
14 | 8, 13 | ffvelrnd 6944 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ) |
15 | ioossre 13069 | . . . . . . . 8 ⊢ (𝐶(,)𝐷) ⊆ ℝ | |
16 | 9, 15 | eqsstri 3951 | . . . . . . 7 ⊢ 𝐸 ⊆ ℝ |
17 | 16, 10 | sselid 3915 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
18 | 16, 11 | sselid 3915 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
19 | ax-resscn 10859 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
20 | ssid 3939 | . . . . . . . 8 ⊢ ℂ ⊆ ℂ | |
21 | cncfss 23968 | . . . . . . . 8 ⊢ ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ)) | |
22 | 19, 20, 21 | mp2an 688 | . . . . . . 7 ⊢ ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ) |
23 | 7, 12 | feqresmpt 6820 | . . . . . . . 8 ⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥))) |
24 | rescncf 23966 | . . . . . . . . 9 ⊢ ((𝐴[,]𝐵) ⊆ 𝐸 → ((ℝ D 𝐹) ∈ (𝐸–cn→ℝ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))) | |
25 | 12, 5, 24 | sylc 65 | . . . . . . . 8 ⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
26 | 23, 25 | eqeltrrd 2840 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
27 | 22, 26 | sselid 3915 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
28 | cniccibl 24910 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ 𝐿1) | |
29 | 17, 18, 27, 28 | syl3anc 1369 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ 𝐿1) |
30 | 2, 4, 14, 29 | iblss 24874 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ 𝐿1) |
31 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (ℝ D 𝐹):𝐸⟶ℝ) |
32 | 2 | sselda 3917 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵)) |
33 | 32, 13 | syldan 590 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ 𝐸) |
34 | 31, 33 | ffvelrnd 6944 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ) |
35 | fdvposle.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 ≤ ((ℝ D 𝐹)‘𝑥)) | |
36 | 30, 34, 35 | itgge0 24880 | . . 3 ⊢ (𝜑 → 0 ≤ ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) d𝑥) |
37 | fdvposle.le | . . . 4 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
38 | fdvposlt.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐸⟶ℝ) | |
39 | fss 6601 | . . . . 5 ⊢ ((𝐹:𝐸⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐸⟶ℂ) | |
40 | 38, 19, 39 | sylancl 585 | . . . 4 ⊢ (𝜑 → 𝐹:𝐸⟶ℂ) |
41 | cncfss 23968 | . . . . . 6 ⊢ ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐸–cn→ℝ) ⊆ (𝐸–cn→ℂ)) | |
42 | 19, 20, 41 | mp2an 688 | . . . . 5 ⊢ (𝐸–cn→ℝ) ⊆ (𝐸–cn→ℂ) |
43 | 42, 5 | sselid 3915 | . . . 4 ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℂ)) |
44 | 9, 10, 11, 37, 40, 43 | ftc2re 32478 | . . 3 ⊢ (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) d𝑥 = ((𝐹‘𝐵) − (𝐹‘𝐴))) |
45 | 36, 44 | breqtrd 5096 | . 2 ⊢ (𝜑 → 0 ≤ ((𝐹‘𝐵) − (𝐹‘𝐴))) |
46 | 38, 11 | ffvelrnd 6944 | . . 3 ⊢ (𝜑 → (𝐹‘𝐵) ∈ ℝ) |
47 | 38, 10 | ffvelrnd 6944 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
48 | 46, 47 | subge0d 11495 | . 2 ⊢ (𝜑 → (0 ≤ ((𝐹‘𝐵) − (𝐹‘𝐴)) ↔ (𝐹‘𝐴) ≤ (𝐹‘𝐵))) |
49 | 45, 48 | mpbid 231 | 1 ⊢ (𝜑 → (𝐹‘𝐴) ≤ (𝐹‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 ↾ cres 5582 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 ≤ cle 10941 − cmin 11135 (,)cioo 13008 [,]cicc 13011 –cn→ccncf 23945 volcvol 24532 𝐿1cibl 24686 ∫citg 24687 D cdv 24932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cc 10122 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-symdif 4173 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-cmp 22446 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-ovol 24533 df-vol 24534 df-mbf 24688 df-itg1 24689 df-itg2 24690 df-ibl 24691 df-itg 24692 df-0p 24739 df-limc 24935 df-dv 24936 |
This theorem is referenced by: fdvnegge 32482 |
Copyright terms: Public domain | W3C validator |