![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fdvposle | Structured version Visualization version GIF version |
Description: Functions with a nonnegative derivative, i.e. monotonously growing functions, preserve ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
Ref | Expression |
---|---|
fdvposlt.d | β’ πΈ = (πΆ(,)π·) |
fdvposlt.a | β’ (π β π΄ β πΈ) |
fdvposlt.b | β’ (π β π΅ β πΈ) |
fdvposlt.f | β’ (π β πΉ:πΈβΆβ) |
fdvposlt.c | β’ (π β (β D πΉ) β (πΈβcnββ)) |
fdvposle.le | β’ (π β π΄ β€ π΅) |
fdvposle.1 | β’ ((π β§ π₯ β (π΄(,)π΅)) β 0 β€ ((β D πΉ)βπ₯)) |
Ref | Expression |
---|---|
fdvposle | β’ (π β (πΉβπ΄) β€ (πΉβπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioossicc 13406 | . . . . . 6 β’ (π΄(,)π΅) β (π΄[,]π΅) | |
2 | 1 | a1i 11 | . . . . 5 β’ (π β (π΄(,)π΅) β (π΄[,]π΅)) |
3 | ioombl 25073 | . . . . . 6 β’ (π΄(,)π΅) β dom vol | |
4 | 3 | a1i 11 | . . . . 5 β’ (π β (π΄(,)π΅) β dom vol) |
5 | fdvposlt.c | . . . . . . . 8 β’ (π β (β D πΉ) β (πΈβcnββ)) | |
6 | cncff 24400 | . . . . . . . 8 β’ ((β D πΉ) β (πΈβcnββ) β (β D πΉ):πΈβΆβ) | |
7 | 5, 6 | syl 17 | . . . . . . 7 β’ (π β (β D πΉ):πΈβΆβ) |
8 | 7 | adantr 481 | . . . . . 6 β’ ((π β§ π₯ β (π΄[,]π΅)) β (β D πΉ):πΈβΆβ) |
9 | fdvposlt.d | . . . . . . . 8 β’ πΈ = (πΆ(,)π·) | |
10 | fdvposlt.a | . . . . . . . 8 β’ (π β π΄ β πΈ) | |
11 | fdvposlt.b | . . . . . . . 8 β’ (π β π΅ β πΈ) | |
12 | 9, 10, 11 | fct2relem 33597 | . . . . . . 7 β’ (π β (π΄[,]π΅) β πΈ) |
13 | 12 | sselda 3981 | . . . . . 6 β’ ((π β§ π₯ β (π΄[,]π΅)) β π₯ β πΈ) |
14 | 8, 13 | ffvelcdmd 7084 | . . . . 5 β’ ((π β§ π₯ β (π΄[,]π΅)) β ((β D πΉ)βπ₯) β β) |
15 | ioossre 13381 | . . . . . . . 8 β’ (πΆ(,)π·) β β | |
16 | 9, 15 | eqsstri 4015 | . . . . . . 7 β’ πΈ β β |
17 | 16, 10 | sselid 3979 | . . . . . 6 β’ (π β π΄ β β) |
18 | 16, 11 | sselid 3979 | . . . . . 6 β’ (π β π΅ β β) |
19 | ax-resscn 11163 | . . . . . . . 8 β’ β β β | |
20 | ssid 4003 | . . . . . . . 8 β’ β β β | |
21 | cncfss 24406 | . . . . . . . 8 β’ ((β β β β§ β β β) β ((π΄[,]π΅)βcnββ) β ((π΄[,]π΅)βcnββ)) | |
22 | 19, 20, 21 | mp2an 690 | . . . . . . 7 β’ ((π΄[,]π΅)βcnββ) β ((π΄[,]π΅)βcnββ) |
23 | 7, 12 | feqresmpt 6958 | . . . . . . . 8 β’ (π β ((β D πΉ) βΎ (π΄[,]π΅)) = (π₯ β (π΄[,]π΅) β¦ ((β D πΉ)βπ₯))) |
24 | rescncf 24404 | . . . . . . . . 9 β’ ((π΄[,]π΅) β πΈ β ((β D πΉ) β (πΈβcnββ) β ((β D πΉ) βΎ (π΄[,]π΅)) β ((π΄[,]π΅)βcnββ))) | |
25 | 12, 5, 24 | sylc 65 | . . . . . . . 8 β’ (π β ((β D πΉ) βΎ (π΄[,]π΅)) β ((π΄[,]π΅)βcnββ)) |
26 | 23, 25 | eqeltrrd 2834 | . . . . . . 7 β’ (π β (π₯ β (π΄[,]π΅) β¦ ((β D πΉ)βπ₯)) β ((π΄[,]π΅)βcnββ)) |
27 | 22, 26 | sselid 3979 | . . . . . 6 β’ (π β (π₯ β (π΄[,]π΅) β¦ ((β D πΉ)βπ₯)) β ((π΄[,]π΅)βcnββ)) |
28 | cniccibl 25349 | . . . . . 6 β’ ((π΄ β β β§ π΅ β β β§ (π₯ β (π΄[,]π΅) β¦ ((β D πΉ)βπ₯)) β ((π΄[,]π΅)βcnββ)) β (π₯ β (π΄[,]π΅) β¦ ((β D πΉ)βπ₯)) β πΏ1) | |
29 | 17, 18, 27, 28 | syl3anc 1371 | . . . . 5 β’ (π β (π₯ β (π΄[,]π΅) β¦ ((β D πΉ)βπ₯)) β πΏ1) |
30 | 2, 4, 14, 29 | iblss 25313 | . . . 4 β’ (π β (π₯ β (π΄(,)π΅) β¦ ((β D πΉ)βπ₯)) β πΏ1) |
31 | 7 | adantr 481 | . . . . 5 β’ ((π β§ π₯ β (π΄(,)π΅)) β (β D πΉ):πΈβΆβ) |
32 | 2 | sselda 3981 | . . . . . 6 β’ ((π β§ π₯ β (π΄(,)π΅)) β π₯ β (π΄[,]π΅)) |
33 | 32, 13 | syldan 591 | . . . . 5 β’ ((π β§ π₯ β (π΄(,)π΅)) β π₯ β πΈ) |
34 | 31, 33 | ffvelcdmd 7084 | . . . 4 β’ ((π β§ π₯ β (π΄(,)π΅)) β ((β D πΉ)βπ₯) β β) |
35 | fdvposle.1 | . . . 4 β’ ((π β§ π₯ β (π΄(,)π΅)) β 0 β€ ((β D πΉ)βπ₯)) | |
36 | 30, 34, 35 | itgge0 25319 | . . 3 β’ (π β 0 β€ β«(π΄(,)π΅)((β D πΉ)βπ₯) dπ₯) |
37 | fdvposle.le | . . . 4 β’ (π β π΄ β€ π΅) | |
38 | fdvposlt.f | . . . . 5 β’ (π β πΉ:πΈβΆβ) | |
39 | fss 6731 | . . . . 5 β’ ((πΉ:πΈβΆβ β§ β β β) β πΉ:πΈβΆβ) | |
40 | 38, 19, 39 | sylancl 586 | . . . 4 β’ (π β πΉ:πΈβΆβ) |
41 | cncfss 24406 | . . . . . 6 β’ ((β β β β§ β β β) β (πΈβcnββ) β (πΈβcnββ)) | |
42 | 19, 20, 41 | mp2an 690 | . . . . 5 β’ (πΈβcnββ) β (πΈβcnββ) |
43 | 42, 5 | sselid 3979 | . . . 4 β’ (π β (β D πΉ) β (πΈβcnββ)) |
44 | 9, 10, 11, 37, 40, 43 | ftc2re 33598 | . . 3 β’ (π β β«(π΄(,)π΅)((β D πΉ)βπ₯) dπ₯ = ((πΉβπ΅) β (πΉβπ΄))) |
45 | 36, 44 | breqtrd 5173 | . 2 β’ (π β 0 β€ ((πΉβπ΅) β (πΉβπ΄))) |
46 | 38, 11 | ffvelcdmd 7084 | . . 3 β’ (π β (πΉβπ΅) β β) |
47 | 38, 10 | ffvelcdmd 7084 | . . 3 β’ (π β (πΉβπ΄) β β) |
48 | 46, 47 | subge0d 11800 | . 2 β’ (π β (0 β€ ((πΉβπ΅) β (πΉβπ΄)) β (πΉβπ΄) β€ (πΉβπ΅))) |
49 | 45, 48 | mpbid 231 | 1 β’ (π β (πΉβπ΄) β€ (πΉβπ΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β wss 3947 class class class wbr 5147 β¦ cmpt 5230 dom cdm 5675 βΎ cres 5677 βΆwf 6536 βcfv 6540 (class class class)co 7405 βcc 11104 βcr 11105 0cc0 11106 β€ cle 11245 β cmin 11440 (,)cioo 13320 [,]cicc 13323 βcnβccncf 24383 volcvol 24971 πΏ1cibl 25125 β«citg 25126 D cdv 25371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cc 10426 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-symdif 4241 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-disj 5113 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-ofr 7667 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-omul 8467 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-dju 9892 df-card 9930 df-acn 9933 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15411 df-clim 15428 df-rlim 15429 df-sum 15629 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-pt 17386 df-prds 17389 df-xrs 17444 df-qtop 17449 df-imas 17450 df-xps 17452 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-mulg 18945 df-cntz 19175 df-cmn 19644 df-psmet 20928 df-xmet 20929 df-met 20930 df-bl 20931 df-mopn 20932 df-fbas 20933 df-fg 20934 df-cnfld 20937 df-top 22387 df-topon 22404 df-topsp 22426 df-bases 22440 df-cld 22514 df-ntr 22515 df-cls 22516 df-nei 22593 df-lp 22631 df-perf 22632 df-cn 22722 df-cnp 22723 df-haus 22810 df-cmp 22882 df-tx 23057 df-hmeo 23250 df-fil 23341 df-fm 23433 df-flim 23434 df-flf 23435 df-xms 23817 df-ms 23818 df-tms 23819 df-cncf 24385 df-ovol 24972 df-vol 24973 df-mbf 25127 df-itg1 25128 df-itg2 25129 df-ibl 25130 df-itg 25131 df-0p 25178 df-limc 25374 df-dv 25375 |
This theorem is referenced by: fdvnegge 33602 |
Copyright terms: Public domain | W3C validator |