Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc2re Structured version   Visualization version   GIF version

Theorem ftc2re 34613
Description: The Fundamental Theorem of Calculus, part two, for functions continuous on 𝐷. (Contributed by Thierry Arnoux, 1-Dec-2021.)
Hypotheses
Ref Expression
ftc2re.e 𝐸 = (𝐶(,)𝐷)
ftc2re.a (𝜑𝐴𝐸)
ftc2re.b (𝜑𝐵𝐸)
ftc2re.le (𝜑𝐴𝐵)
ftc2re.f (𝜑𝐹:𝐸⟶ℂ)
ftc2re.1 (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℂ))
Assertion
Ref Expression
ftc2re (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝑡,𝐹   𝜑,𝑡
Allowed substitution hints:   𝐶(𝑡)   𝐷(𝑡)   𝐸(𝑡)

Proof of Theorem ftc2re
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc2re.e . . . . . 6 𝐸 = (𝐶(,)𝐷)
2 ioossre 13448 . . . . . 6 (𝐶(,)𝐷) ⊆ ℝ
31, 2eqsstri 4030 . . . . 5 𝐸 ⊆ ℝ
43a1i 11 . . . 4 (𝜑𝐸 ⊆ ℝ)
5 ftc2re.a . . . 4 (𝜑𝐴𝐸)
64, 5sseldd 3984 . . 3 (𝜑𝐴 ∈ ℝ)
7 ftc2re.b . . . 4 (𝜑𝐵𝐸)
84, 7sseldd 3984 . . 3 (𝜑𝐵 ∈ ℝ)
9 ftc2re.le . . 3 (𝜑𝐴𝐵)
10 ax-resscn 11212 . . . . . . 7 ℝ ⊆ ℂ
1110a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
12 ftc2re.f . . . . . 6 (𝜑𝐹:𝐸⟶ℂ)
13 iccssre 13469 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
146, 8, 13syl2anc 584 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
15 eqid 2737 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
16 tgioo4 24826 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
1715, 16dvres 25946 . . . . . 6 (((ℝ ⊆ ℂ ∧ 𝐹:𝐸⟶ℂ) ∧ (𝐸 ⊆ ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
1811, 12, 4, 14, 17syl22anc 839 . . . . 5 (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
19 iccntr 24843 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
206, 8, 19syl2anc 584 . . . . . 6 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2120reseq2d 5997 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)))
2218, 21eqtrd 2777 . . . 4 (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)))
23 ioossicc 13473 . . . . . . 7 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
2423a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
251, 5, 7fct2relem 34612 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸)
2624, 25sstrd 3994 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐸)
27 ftc2re.1 . . . . 5 (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℂ))
28 rescncf 24923 . . . . 5 ((𝐴(,)𝐵) ⊆ 𝐸 → ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)))
2926, 27, 28sylc 65 . . . 4 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
3022, 29eqeltrd 2841 . . 3 (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
31 ioombl 25600 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
3231a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
33 cnmbf 25694 . . . . . 6 (((𝐴(,)𝐵) ∈ dom vol ∧ ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ MblFn)
3432, 29, 33syl2anc 584 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ MblFn)
35 dmres 6030 . . . . . . 7 dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = ((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹))
3635fveq2i 6909 . . . . . 6 (vol‘dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) = (vol‘((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹)))
37 cncff 24919 . . . . . . . . . . . 12 ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → (ℝ D 𝐹):𝐸⟶ℂ)
3827, 37syl 17 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹):𝐸⟶ℂ)
3938fdmd 6746 . . . . . . . . . 10 (𝜑 → dom (ℝ D 𝐹) = 𝐸)
4039ineq2d 4220 . . . . . . . . 9 (𝜑 → ((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹)) = ((𝐴(,)𝐵) ∩ 𝐸))
41 dfss2 3969 . . . . . . . . . 10 ((𝐴(,)𝐵) ⊆ 𝐸 ↔ ((𝐴(,)𝐵) ∩ 𝐸) = (𝐴(,)𝐵))
4226, 41sylib 218 . . . . . . . . 9 (𝜑 → ((𝐴(,)𝐵) ∩ 𝐸) = (𝐴(,)𝐵))
4340, 42eqtrd 2777 . . . . . . . 8 (𝜑 → ((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹)) = (𝐴(,)𝐵))
4443fveq2d 6910 . . . . . . 7 (𝜑 → (vol‘((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹))) = (vol‘(𝐴(,)𝐵)))
45 volioo 25604 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
466, 8, 9, 45syl3anc 1373 . . . . . . . 8 (𝜑 → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
478, 6resubcld 11691 . . . . . . . 8 (𝜑 → (𝐵𝐴) ∈ ℝ)
4846, 47eqeltrd 2841 . . . . . . 7 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
4944, 48eqeltrd 2841 . . . . . 6 (𝜑 → (vol‘((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹))) ∈ ℝ)
5036, 49eqeltrid 2845 . . . . 5 (𝜑 → (vol‘dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) ∈ ℝ)
51 rescncf 24923 . . . . . . . . 9 ((𝐴[,]𝐵) ⊆ 𝐸 → ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
5225, 51syl 17 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
5327, 52mpd 15 . . . . . . 7 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
54 cniccbdd 25496 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥)
556, 8, 53, 54syl3anc 1373 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥)
5635, 43eqtrid 2789 . . . . . . . . . . 11 (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (𝐴(,)𝐵))
5756, 24eqsstrd 4018 . . . . . . . . . 10 (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵))
58 ssralv 4052 . . . . . . . . . 10 (dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥))
5957, 58syl 17 . . . . . . . . 9 (𝜑 → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥))
6059adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥))
6157adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵))
6261sselda 3983 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → 𝑦 ∈ (𝐴[,]𝐵))
63 fvres 6925 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐴[,]𝐵) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
6462, 63syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
65 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)))
6656ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (𝐴(,)𝐵))
6765, 66eleqtrd 2843 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → 𝑦 ∈ (𝐴(,)𝐵))
68 fvres 6925 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐴(,)𝐵) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
6967, 68syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
7064, 69eqtr4d 2780 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦) = (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦))
7170fveq2d 6910 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) = (abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)))
7271breq1d 5153 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → ((abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 ↔ (abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7372biimpd 229 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → ((abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → (abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7473ralimdva 3167 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7560, 74syld 47 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7675reximdva 3168 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7755, 76mpd 15 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥)
78 bddibl 25875 . . . . 5 ((((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ MblFn ∧ (vol‘dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ 𝐿1)
7934, 50, 77, 78syl3anc 1373 . . . 4 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ 𝐿1)
8022, 79eqeltrd 2841 . . 3 (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) ∈ 𝐿1)
81 dvcn 25957 . . . . 5 (((ℝ ⊆ ℂ ∧ 𝐹:𝐸⟶ℂ ∧ 𝐸 ⊆ ℝ) ∧ dom (ℝ D 𝐹) = 𝐸) → 𝐹 ∈ (𝐸cn→ℂ))
8211, 12, 4, 39, 81syl31anc 1375 . . . 4 (𝜑𝐹 ∈ (𝐸cn→ℂ))
83 rescncf 24923 . . . . 5 ((𝐴[,]𝐵) ⊆ 𝐸 → (𝐹 ∈ (𝐸cn→ℂ) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
8425, 83syl 17 . . . 4 (𝜑 → (𝐹 ∈ (𝐸cn→ℂ) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
8582, 84mpd 15 . . 3 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
866, 8, 9, 30, 80, 85ftc2 26085 . 2 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴)))
8722fveq1d 6908 . . . . 5 (𝜑 → ((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑡))
88 fvres 6925 . . . . 5 (𝑡 ∈ (𝐴(,)𝐵) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
8987, 88sylan9eq 2797 . . . 4 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
9089ralrimiva 3146 . . 3 (𝜑 → ∀𝑡 ∈ (𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
91 itgeq2 25813 . . 3 (∀𝑡 ∈ (𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = ((ℝ D 𝐹)‘𝑡) → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
9290, 91syl 17 . 2 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
936rexrd 11311 . . . . 5 (𝜑𝐴 ∈ ℝ*)
948rexrd 11311 . . . . 5 (𝜑𝐵 ∈ ℝ*)
95 ubicc2 13505 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
9693, 94, 9, 95syl3anc 1373 . . . 4 (𝜑𝐵 ∈ (𝐴[,]𝐵))
9796fvresd 6926 . . 3 (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) = (𝐹𝐵))
98 lbicc2 13504 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
9993, 94, 9, 98syl3anc 1373 . . . 4 (𝜑𝐴 ∈ (𝐴[,]𝐵))
10099fvresd 6926 . . 3 (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴) = (𝐹𝐴))
10197, 100oveq12d 7449 . 2 (𝜑 → (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴)) = ((𝐹𝐵) − (𝐹𝐴)))
10286, 92, 1013eqtr3d 2785 1 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  cin 3950  wss 3951   class class class wbr 5143  dom cdm 5685  ran crn 5686  cres 5687  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  *cxr 11294  cle 11296  cmin 11492  (,)cioo 13387  [,]cicc 13390  abscabs 15273  TopOpenctopn 17466  topGenctg 17482  fldccnfld 21364  intcnt 23025  cnccncf 24902  volcvol 25498  MblFncmbf 25649  𝐿1cibl 25652  citg 25653   D cdv 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-symdif 4253  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655  df-itg2 25656  df-ibl 25657  df-itg 25658  df-0p 25705  df-limc 25901  df-dv 25902
This theorem is referenced by:  fdvposlt  34614  fdvposle  34616  itgexpif  34621
  Copyright terms: Public domain W3C validator