Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc2re Structured version   Visualization version   GIF version

Theorem ftc2re 34630
Description: The Fundamental Theorem of Calculus, part two, for functions continuous on 𝐷. (Contributed by Thierry Arnoux, 1-Dec-2021.)
Hypotheses
Ref Expression
ftc2re.e 𝐸 = (𝐶(,)𝐷)
ftc2re.a (𝜑𝐴𝐸)
ftc2re.b (𝜑𝐵𝐸)
ftc2re.le (𝜑𝐴𝐵)
ftc2re.f (𝜑𝐹:𝐸⟶ℂ)
ftc2re.1 (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℂ))
Assertion
Ref Expression
ftc2re (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝑡,𝐹   𝜑,𝑡
Allowed substitution hints:   𝐶(𝑡)   𝐷(𝑡)   𝐸(𝑡)

Proof of Theorem ftc2re
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc2re.e . . . . . 6 𝐸 = (𝐶(,)𝐷)
2 ioossre 13424 . . . . . 6 (𝐶(,)𝐷) ⊆ ℝ
31, 2eqsstri 4005 . . . . 5 𝐸 ⊆ ℝ
43a1i 11 . . . 4 (𝜑𝐸 ⊆ ℝ)
5 ftc2re.a . . . 4 (𝜑𝐴𝐸)
64, 5sseldd 3959 . . 3 (𝜑𝐴 ∈ ℝ)
7 ftc2re.b . . . 4 (𝜑𝐵𝐸)
84, 7sseldd 3959 . . 3 (𝜑𝐵 ∈ ℝ)
9 ftc2re.le . . 3 (𝜑𝐴𝐵)
10 ax-resscn 11186 . . . . . . 7 ℝ ⊆ ℂ
1110a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
12 ftc2re.f . . . . . 6 (𝜑𝐹:𝐸⟶ℂ)
13 iccssre 13446 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
146, 8, 13syl2anc 584 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
15 eqid 2735 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
16 tgioo4 24744 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
1715, 16dvres 25864 . . . . . 6 (((ℝ ⊆ ℂ ∧ 𝐹:𝐸⟶ℂ) ∧ (𝐸 ⊆ ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
1811, 12, 4, 14, 17syl22anc 838 . . . . 5 (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
19 iccntr 24761 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
206, 8, 19syl2anc 584 . . . . . 6 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2120reseq2d 5966 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)))
2218, 21eqtrd 2770 . . . 4 (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)))
23 ioossicc 13450 . . . . . . 7 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
2423a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
251, 5, 7fct2relem 34629 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸)
2624, 25sstrd 3969 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐸)
27 ftc2re.1 . . . . 5 (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℂ))
28 rescncf 24841 . . . . 5 ((𝐴(,)𝐵) ⊆ 𝐸 → ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)))
2926, 27, 28sylc 65 . . . 4 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
3022, 29eqeltrd 2834 . . 3 (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
31 ioombl 25518 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
3231a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
33 cnmbf 25612 . . . . . 6 (((𝐴(,)𝐵) ∈ dom vol ∧ ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ MblFn)
3432, 29, 33syl2anc 584 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ MblFn)
35 dmres 5999 . . . . . . 7 dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = ((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹))
3635fveq2i 6879 . . . . . 6 (vol‘dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) = (vol‘((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹)))
37 cncff 24837 . . . . . . . . . . . 12 ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → (ℝ D 𝐹):𝐸⟶ℂ)
3827, 37syl 17 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹):𝐸⟶ℂ)
3938fdmd 6716 . . . . . . . . . 10 (𝜑 → dom (ℝ D 𝐹) = 𝐸)
4039ineq2d 4195 . . . . . . . . 9 (𝜑 → ((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹)) = ((𝐴(,)𝐵) ∩ 𝐸))
41 dfss2 3944 . . . . . . . . . 10 ((𝐴(,)𝐵) ⊆ 𝐸 ↔ ((𝐴(,)𝐵) ∩ 𝐸) = (𝐴(,)𝐵))
4226, 41sylib 218 . . . . . . . . 9 (𝜑 → ((𝐴(,)𝐵) ∩ 𝐸) = (𝐴(,)𝐵))
4340, 42eqtrd 2770 . . . . . . . 8 (𝜑 → ((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹)) = (𝐴(,)𝐵))
4443fveq2d 6880 . . . . . . 7 (𝜑 → (vol‘((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹))) = (vol‘(𝐴(,)𝐵)))
45 volioo 25522 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
466, 8, 9, 45syl3anc 1373 . . . . . . . 8 (𝜑 → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
478, 6resubcld 11665 . . . . . . . 8 (𝜑 → (𝐵𝐴) ∈ ℝ)
4846, 47eqeltrd 2834 . . . . . . 7 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
4944, 48eqeltrd 2834 . . . . . 6 (𝜑 → (vol‘((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹))) ∈ ℝ)
5036, 49eqeltrid 2838 . . . . 5 (𝜑 → (vol‘dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) ∈ ℝ)
51 rescncf 24841 . . . . . . . . 9 ((𝐴[,]𝐵) ⊆ 𝐸 → ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
5225, 51syl 17 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
5327, 52mpd 15 . . . . . . 7 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
54 cniccbdd 25414 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥)
556, 8, 53, 54syl3anc 1373 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥)
5635, 43eqtrid 2782 . . . . . . . . . . 11 (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (𝐴(,)𝐵))
5756, 24eqsstrd 3993 . . . . . . . . . 10 (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵))
58 ssralv 4027 . . . . . . . . . 10 (dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥))
5957, 58syl 17 . . . . . . . . 9 (𝜑 → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥))
6059adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥))
6157adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵))
6261sselda 3958 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → 𝑦 ∈ (𝐴[,]𝐵))
63 fvres 6895 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐴[,]𝐵) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
6462, 63syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
65 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)))
6656ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (𝐴(,)𝐵))
6765, 66eleqtrd 2836 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → 𝑦 ∈ (𝐴(,)𝐵))
68 fvres 6895 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐴(,)𝐵) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
6967, 68syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
7064, 69eqtr4d 2773 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦) = (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦))
7170fveq2d 6880 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) = (abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)))
7271breq1d 5129 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → ((abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 ↔ (abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7372biimpd 229 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → ((abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → (abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7473ralimdva 3152 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7560, 74syld 47 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7675reximdva 3153 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7755, 76mpd 15 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥)
78 bddibl 25793 . . . . 5 ((((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ MblFn ∧ (vol‘dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ 𝐿1)
7934, 50, 77, 78syl3anc 1373 . . . 4 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ 𝐿1)
8022, 79eqeltrd 2834 . . 3 (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) ∈ 𝐿1)
81 dvcn 25875 . . . . 5 (((ℝ ⊆ ℂ ∧ 𝐹:𝐸⟶ℂ ∧ 𝐸 ⊆ ℝ) ∧ dom (ℝ D 𝐹) = 𝐸) → 𝐹 ∈ (𝐸cn→ℂ))
8211, 12, 4, 39, 81syl31anc 1375 . . . 4 (𝜑𝐹 ∈ (𝐸cn→ℂ))
83 rescncf 24841 . . . . 5 ((𝐴[,]𝐵) ⊆ 𝐸 → (𝐹 ∈ (𝐸cn→ℂ) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
8425, 83syl 17 . . . 4 (𝜑 → (𝐹 ∈ (𝐸cn→ℂ) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
8582, 84mpd 15 . . 3 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
866, 8, 9, 30, 80, 85ftc2 26003 . 2 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴)))
8722fveq1d 6878 . . . . 5 (𝜑 → ((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑡))
88 fvres 6895 . . . . 5 (𝑡 ∈ (𝐴(,)𝐵) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
8987, 88sylan9eq 2790 . . . 4 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
9089ralrimiva 3132 . . 3 (𝜑 → ∀𝑡 ∈ (𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
91 itgeq2 25731 . . 3 (∀𝑡 ∈ (𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = ((ℝ D 𝐹)‘𝑡) → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
9290, 91syl 17 . 2 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
936rexrd 11285 . . . . 5 (𝜑𝐴 ∈ ℝ*)
948rexrd 11285 . . . . 5 (𝜑𝐵 ∈ ℝ*)
95 ubicc2 13482 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
9693, 94, 9, 95syl3anc 1373 . . . 4 (𝜑𝐵 ∈ (𝐴[,]𝐵))
9796fvresd 6896 . . 3 (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) = (𝐹𝐵))
98 lbicc2 13481 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
9993, 94, 9, 98syl3anc 1373 . . . 4 (𝜑𝐴 ∈ (𝐴[,]𝐵))
10099fvresd 6896 . . 3 (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴) = (𝐹𝐴))
10197, 100oveq12d 7423 . 2 (𝜑 → (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴)) = ((𝐹𝐵) − (𝐹𝐴)))
10286, 92, 1013eqtr3d 2778 1 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  cin 3925  wss 3926   class class class wbr 5119  dom cdm 5654  ran crn 5655  cres 5656  wf 6527  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  *cxr 11268  cle 11270  cmin 11466  (,)cioo 13362  [,]cicc 13365  abscabs 15253  TopOpenctopn 17435  topGenctg 17451  fldccnfld 21315  intcnt 22955  cnccncf 24820  volcvol 25416  MblFncmbf 25567  𝐿1cibl 25570  citg 25571   D cdv 25816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cc 10449  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-symdif 4228  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-cmp 23325  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-ovol 25417  df-vol 25418  df-mbf 25572  df-itg1 25573  df-itg2 25574  df-ibl 25575  df-itg 25576  df-0p 25623  df-limc 25819  df-dv 25820
This theorem is referenced by:  fdvposlt  34631  fdvposle  34633  itgexpif  34638
  Copyright terms: Public domain W3C validator