Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc2re Structured version   Visualization version   GIF version

Theorem ftc2re 33599
Description: The Fundamental Theorem of Calculus, part two, for functions continuous on 𝐷. (Contributed by Thierry Arnoux, 1-Dec-2021.)
Hypotheses
Ref Expression
ftc2re.e 𝐸 = (𝐶(,)𝐷)
ftc2re.a (𝜑𝐴𝐸)
ftc2re.b (𝜑𝐵𝐸)
ftc2re.le (𝜑𝐴𝐵)
ftc2re.f (𝜑𝐹:𝐸⟶ℂ)
ftc2re.1 (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℂ))
Assertion
Ref Expression
ftc2re (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝑡,𝐹   𝜑,𝑡
Allowed substitution hints:   𝐶(𝑡)   𝐷(𝑡)   𝐸(𝑡)

Proof of Theorem ftc2re
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc2re.e . . . . . 6 𝐸 = (𝐶(,)𝐷)
2 ioossre 13382 . . . . . 6 (𝐶(,)𝐷) ⊆ ℝ
31, 2eqsstri 4016 . . . . 5 𝐸 ⊆ ℝ
43a1i 11 . . . 4 (𝜑𝐸 ⊆ ℝ)
5 ftc2re.a . . . 4 (𝜑𝐴𝐸)
64, 5sseldd 3983 . . 3 (𝜑𝐴 ∈ ℝ)
7 ftc2re.b . . . 4 (𝜑𝐵𝐸)
84, 7sseldd 3983 . . 3 (𝜑𝐵 ∈ ℝ)
9 ftc2re.le . . 3 (𝜑𝐴𝐵)
10 ax-resscn 11164 . . . . . . 7 ℝ ⊆ ℂ
1110a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
12 ftc2re.f . . . . . 6 (𝜑𝐹:𝐸⟶ℂ)
13 iccssre 13403 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
146, 8, 13syl2anc 585 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
15 eqid 2733 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1615tgioo2 24311 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
1715, 16dvres 25420 . . . . . 6 (((ℝ ⊆ ℂ ∧ 𝐹:𝐸⟶ℂ) ∧ (𝐸 ⊆ ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
1811, 12, 4, 14, 17syl22anc 838 . . . . 5 (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
19 iccntr 24329 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
206, 8, 19syl2anc 585 . . . . . 6 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2120reseq2d 5980 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)))
2218, 21eqtrd 2773 . . . 4 (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)))
23 ioossicc 13407 . . . . . . 7 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
2423a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
251, 5, 7fct2relem 33598 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸)
2624, 25sstrd 3992 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐸)
27 ftc2re.1 . . . . 5 (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℂ))
28 rescncf 24405 . . . . 5 ((𝐴(,)𝐵) ⊆ 𝐸 → ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)))
2926, 27, 28sylc 65 . . . 4 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
3022, 29eqeltrd 2834 . . 3 (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
31 ioombl 25074 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
3231a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
33 cnmbf 25168 . . . . . 6 (((𝐴(,)𝐵) ∈ dom vol ∧ ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ MblFn)
3432, 29, 33syl2anc 585 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ MblFn)
35 dmres 6002 . . . . . . 7 dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = ((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹))
3635fveq2i 6892 . . . . . 6 (vol‘dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) = (vol‘((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹)))
37 cncff 24401 . . . . . . . . . . . 12 ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → (ℝ D 𝐹):𝐸⟶ℂ)
3827, 37syl 17 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹):𝐸⟶ℂ)
3938fdmd 6726 . . . . . . . . . 10 (𝜑 → dom (ℝ D 𝐹) = 𝐸)
4039ineq2d 4212 . . . . . . . . 9 (𝜑 → ((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹)) = ((𝐴(,)𝐵) ∩ 𝐸))
41 df-ss 3965 . . . . . . . . . 10 ((𝐴(,)𝐵) ⊆ 𝐸 ↔ ((𝐴(,)𝐵) ∩ 𝐸) = (𝐴(,)𝐵))
4226, 41sylib 217 . . . . . . . . 9 (𝜑 → ((𝐴(,)𝐵) ∩ 𝐸) = (𝐴(,)𝐵))
4340, 42eqtrd 2773 . . . . . . . 8 (𝜑 → ((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹)) = (𝐴(,)𝐵))
4443fveq2d 6893 . . . . . . 7 (𝜑 → (vol‘((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹))) = (vol‘(𝐴(,)𝐵)))
45 volioo 25078 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
466, 8, 9, 45syl3anc 1372 . . . . . . . 8 (𝜑 → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
478, 6resubcld 11639 . . . . . . . 8 (𝜑 → (𝐵𝐴) ∈ ℝ)
4846, 47eqeltrd 2834 . . . . . . 7 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
4944, 48eqeltrd 2834 . . . . . 6 (𝜑 → (vol‘((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹))) ∈ ℝ)
5036, 49eqeltrid 2838 . . . . 5 (𝜑 → (vol‘dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) ∈ ℝ)
51 rescncf 24405 . . . . . . . . 9 ((𝐴[,]𝐵) ⊆ 𝐸 → ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
5225, 51syl 17 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
5327, 52mpd 15 . . . . . . 7 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
54 cniccbdd 24970 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥)
556, 8, 53, 54syl3anc 1372 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥)
5635, 43eqtrid 2785 . . . . . . . . . . 11 (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (𝐴(,)𝐵))
5756, 24eqsstrd 4020 . . . . . . . . . 10 (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵))
58 ssralv 4050 . . . . . . . . . 10 (dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥))
5957, 58syl 17 . . . . . . . . 9 (𝜑 → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥))
6059adantr 482 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥))
6157adantr 482 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵))
6261sselda 3982 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → 𝑦 ∈ (𝐴[,]𝐵))
63 fvres 6908 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐴[,]𝐵) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
6462, 63syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
65 simpr 486 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)))
6656ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (𝐴(,)𝐵))
6765, 66eleqtrd 2836 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → 𝑦 ∈ (𝐴(,)𝐵))
68 fvres 6908 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐴(,)𝐵) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
6967, 68syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
7064, 69eqtr4d 2776 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦) = (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦))
7170fveq2d 6893 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) = (abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)))
7271breq1d 5158 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → ((abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 ↔ (abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7372biimpd 228 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → ((abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → (abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7473ralimdva 3168 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7560, 74syld 47 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7675reximdva 3169 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7755, 76mpd 15 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥)
78 bddibl 25349 . . . . 5 ((((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ MblFn ∧ (vol‘dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ 𝐿1)
7934, 50, 77, 78syl3anc 1372 . . . 4 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ 𝐿1)
8022, 79eqeltrd 2834 . . 3 (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) ∈ 𝐿1)
81 dvcn 25430 . . . . 5 (((ℝ ⊆ ℂ ∧ 𝐹:𝐸⟶ℂ ∧ 𝐸 ⊆ ℝ) ∧ dom (ℝ D 𝐹) = 𝐸) → 𝐹 ∈ (𝐸cn→ℂ))
8211, 12, 4, 39, 81syl31anc 1374 . . . 4 (𝜑𝐹 ∈ (𝐸cn→ℂ))
83 rescncf 24405 . . . . 5 ((𝐴[,]𝐵) ⊆ 𝐸 → (𝐹 ∈ (𝐸cn→ℂ) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
8425, 83syl 17 . . . 4 (𝜑 → (𝐹 ∈ (𝐸cn→ℂ) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
8582, 84mpd 15 . . 3 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
866, 8, 9, 30, 80, 85ftc2 25553 . 2 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴)))
8722fveq1d 6891 . . . . 5 (𝜑 → ((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑡))
88 fvres 6908 . . . . 5 (𝑡 ∈ (𝐴(,)𝐵) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
8987, 88sylan9eq 2793 . . . 4 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
9089ralrimiva 3147 . . 3 (𝜑 → ∀𝑡 ∈ (𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
91 itgeq2 25287 . . 3 (∀𝑡 ∈ (𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = ((ℝ D 𝐹)‘𝑡) → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
9290, 91syl 17 . 2 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
936rexrd 11261 . . . . 5 (𝜑𝐴 ∈ ℝ*)
948rexrd 11261 . . . . 5 (𝜑𝐵 ∈ ℝ*)
95 ubicc2 13439 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
9693, 94, 9, 95syl3anc 1372 . . . 4 (𝜑𝐵 ∈ (𝐴[,]𝐵))
9796fvresd 6909 . . 3 (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) = (𝐹𝐵))
98 lbicc2 13438 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
9993, 94, 9, 98syl3anc 1372 . . . 4 (𝜑𝐴 ∈ (𝐴[,]𝐵))
10099fvresd 6909 . . 3 (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴) = (𝐹𝐴))
10197, 100oveq12d 7424 . 2 (𝜑 → (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴)) = ((𝐹𝐵) − (𝐹𝐴)))
10286, 92, 1013eqtr3d 2781 1 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3062  wrex 3071  cin 3947  wss 3948   class class class wbr 5148  dom cdm 5676  ran crn 5677  cres 5678  wf 6537  cfv 6541  (class class class)co 7406  cc 11105  cr 11106  *cxr 11244  cle 11246  cmin 11441  (,)cioo 13321  [,]cicc 13324  abscabs 15178  TopOpenctopn 17364  topGenctg 17380  fldccnfld 20937  intcnt 22513  cnccncf 24384  volcvol 24972  MblFncmbf 25123  𝐿1cibl 25126  citg 25127   D cdv 25372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-inf2 9633  ax-cc 10427  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185  ax-addf 11186  ax-mulf 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-symdif 4242  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-of 7667  df-ofr 7668  df-om 7853  df-1st 7972  df-2nd 7973  df-supp 8144  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-2o 8464  df-oadd 8467  df-omul 8468  df-er 8700  df-map 8819  df-pm 8820  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-fi 9403  df-sup 9434  df-inf 9435  df-oi 9502  df-dju 9893  df-card 9931  df-acn 9934  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ioo 13325  df-ioc 13326  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-fl 13754  df-mod 13832  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-limsup 15412  df-clim 15429  df-rlim 15430  df-sum 15630  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17142  df-ress 17171  df-plusg 17207  df-mulr 17208  df-starv 17209  df-sca 17210  df-vsca 17211  df-ip 17212  df-tset 17213  df-ple 17214  df-ds 17216  df-unif 17217  df-hom 17218  df-cco 17219  df-rest 17365  df-topn 17366  df-0g 17384  df-gsum 17385  df-topgen 17386  df-pt 17387  df-prds 17390  df-xrs 17445  df-qtop 17450  df-imas 17451  df-xps 17453  df-mre 17527  df-mrc 17528  df-acs 17530  df-mgm 18558  df-sgrp 18607  df-mnd 18623  df-submnd 18669  df-mulg 18946  df-cntz 19176  df-cmn 19645  df-psmet 20929  df-xmet 20930  df-met 20931  df-bl 20932  df-mopn 20933  df-fbas 20934  df-fg 20935  df-cnfld 20938  df-top 22388  df-topon 22405  df-topsp 22427  df-bases 22441  df-cld 22515  df-ntr 22516  df-cls 22517  df-nei 22594  df-lp 22632  df-perf 22633  df-cn 22723  df-cnp 22724  df-haus 22811  df-cmp 22883  df-tx 23058  df-hmeo 23251  df-fil 23342  df-fm 23434  df-flim 23435  df-flf 23436  df-xms 23818  df-ms 23819  df-tms 23820  df-cncf 24386  df-ovol 24973  df-vol 24974  df-mbf 25128  df-itg1 25129  df-itg2 25130  df-ibl 25131  df-itg 25132  df-0p 25179  df-limc 25375  df-dv 25376
This theorem is referenced by:  fdvposlt  33600  fdvposle  33602  itgexpif  33607
  Copyright terms: Public domain W3C validator