Step | Hyp | Ref
| Expression |
1 | | ftc2re.e |
. . . . . 6
⊢ 𝐸 = (𝐶(,)𝐷) |
2 | | ioossre 13140 |
. . . . . 6
⊢ (𝐶(,)𝐷) ⊆ ℝ |
3 | 1, 2 | eqsstri 3955 |
. . . . 5
⊢ 𝐸 ⊆
ℝ |
4 | 3 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐸 ⊆ ℝ) |
5 | | ftc2re.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝐸) |
6 | 4, 5 | sseldd 3922 |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) |
7 | | ftc2re.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝐸) |
8 | 4, 7 | sseldd 3922 |
. . 3
⊢ (𝜑 → 𝐵 ∈ ℝ) |
9 | | ftc2re.le |
. . 3
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
10 | | ax-resscn 10928 |
. . . . . . 7
⊢ ℝ
⊆ ℂ |
11 | 10 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℝ ⊆
ℂ) |
12 | | ftc2re.f |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐸⟶ℂ) |
13 | | iccssre 13161 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
14 | 6, 8, 13 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
15 | | eqid 2738 |
. . . . . . 7
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
16 | 15 | tgioo2 23966 |
. . . . . . 7
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
17 | 15, 16 | dvres 25075 |
. . . . . 6
⊢
(((ℝ ⊆ ℂ ∧ 𝐹:𝐸⟶ℂ) ∧ (𝐸 ⊆ ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘(𝐴[,]𝐵)))) |
18 | 11, 12, 4, 14, 17 | syl22anc 836 |
. . . . 5
⊢ (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘(𝐴[,]𝐵)))) |
19 | | iccntr 23984 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
20 | 6, 8, 19 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
21 | 20 | reseq2d 5891 |
. . . . 5
⊢ (𝜑 → ((ℝ D 𝐹) ↾
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) |
22 | 18, 21 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) |
23 | | ioossicc 13165 |
. . . . . . 7
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
24 | 23 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
25 | 1, 5, 7 | fct2relem 32577 |
. . . . . 6
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸) |
26 | 24, 25 | sstrd 3931 |
. . . . 5
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐸) |
27 | | ftc2re.1 |
. . . . 5
⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℂ)) |
28 | | rescncf 24060 |
. . . . 5
⊢ ((𝐴(,)𝐵) ⊆ 𝐸 → ((ℝ D 𝐹) ∈ (𝐸–cn→ℂ) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))) |
29 | 26, 27, 28 | sylc 65 |
. . . 4
⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
30 | 22, 29 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
31 | | ioombl 24729 |
. . . . . . 7
⊢ (𝐴(,)𝐵) ∈ dom vol |
32 | 31 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐴(,)𝐵) ∈ dom vol) |
33 | | cnmbf 24823 |
. . . . . 6
⊢ (((𝐴(,)𝐵) ∈ dom vol ∧ ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ MblFn) |
34 | 32, 29, 33 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ MblFn) |
35 | | dmres 5913 |
. . . . . . 7
⊢ dom
((ℝ D 𝐹) ↾
(𝐴(,)𝐵)) = ((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹)) |
36 | 35 | fveq2i 6777 |
. . . . . 6
⊢
(vol‘dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) = (vol‘((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹))) |
37 | | cncff 24056 |
. . . . . . . . . . . 12
⊢ ((ℝ
D 𝐹) ∈ (𝐸–cn→ℂ) → (ℝ D 𝐹):𝐸⟶ℂ) |
38 | 27, 37 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D 𝐹):𝐸⟶ℂ) |
39 | 38 | fdmd 6611 |
. . . . . . . . . 10
⊢ (𝜑 → dom (ℝ D 𝐹) = 𝐸) |
40 | 39 | ineq2d 4146 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹)) = ((𝐴(,)𝐵) ∩ 𝐸)) |
41 | | df-ss 3904 |
. . . . . . . . . 10
⊢ ((𝐴(,)𝐵) ⊆ 𝐸 ↔ ((𝐴(,)𝐵) ∩ 𝐸) = (𝐴(,)𝐵)) |
42 | 26, 41 | sylib 217 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴(,)𝐵) ∩ 𝐸) = (𝐴(,)𝐵)) |
43 | 40, 42 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹)) = (𝐴(,)𝐵)) |
44 | 43 | fveq2d 6778 |
. . . . . . 7
⊢ (𝜑 → (vol‘((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹))) = (vol‘(𝐴(,)𝐵))) |
45 | | volioo 24733 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |
46 | 6, 8, 9, 45 | syl3anc 1370 |
. . . . . . . 8
⊢ (𝜑 → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |
47 | 8, 6 | resubcld 11403 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
48 | 46, 47 | eqeltrd 2839 |
. . . . . . 7
⊢ (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ) |
49 | 44, 48 | eqeltrd 2839 |
. . . . . 6
⊢ (𝜑 → (vol‘((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹))) ∈ ℝ) |
50 | 36, 49 | eqeltrid 2843 |
. . . . 5
⊢ (𝜑 → (vol‘dom ((ℝ D
𝐹) ↾ (𝐴(,)𝐵))) ∈ ℝ) |
51 | | rescncf 24060 |
. . . . . . . . 9
⊢ ((𝐴[,]𝐵) ⊆ 𝐸 → ((ℝ D 𝐹) ∈ (𝐸–cn→ℂ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))) |
52 | 25, 51 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ D 𝐹) ∈ (𝐸–cn→ℂ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))) |
53 | 27, 52 | mpd 15 |
. . . . . . 7
⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
54 | | cniccbdd 24625 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ((ℝ
D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥) |
55 | 6, 8, 53, 54 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥) |
56 | 35, 43 | eqtrid 2790 |
. . . . . . . . . . 11
⊢ (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (𝐴(,)𝐵)) |
57 | 56, 24 | eqsstrd 3959 |
. . . . . . . . . 10
⊢ (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵)) |
58 | | ssralv 3987 |
. . . . . . . . . 10
⊢ (dom
((ℝ D 𝐹) ↾
(𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥)) |
59 | 57, 58 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥)) |
60 | 59 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥)) |
61 | 57 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵)) |
62 | 61 | sselda 3921 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → 𝑦 ∈ (𝐴[,]𝐵)) |
63 | | fvres 6793 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (𝐴[,]𝐵) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦)) |
64 | 62, 63 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦)) |
65 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) |
66 | 56 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (𝐴(,)𝐵)) |
67 | 65, 66 | eleqtrd 2841 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → 𝑦 ∈ (𝐴(,)𝐵)) |
68 | | fvres 6793 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (𝐴(,)𝐵) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦)) |
69 | 67, 68 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦)) |
70 | 64, 69 | eqtr4d 2781 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦) = (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) |
71 | 70 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) = (abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦))) |
72 | 71 | breq1d 5084 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → ((abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 ↔ (abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥)) |
73 | 72 | biimpd 228 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → ((abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → (abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥)) |
74 | 73 | ralimdva 3108 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥)) |
75 | 60, 74 | syld 47 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥)) |
76 | 75 | reximdva 3203 |
. . . . . 6
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥)) |
77 | 55, 76 | mpd 15 |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥) |
78 | | bddibl 25004 |
. . . . 5
⊢
((((ℝ D 𝐹)
↾ (𝐴(,)𝐵)) ∈ MblFn ∧
(vol‘dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈
𝐿1) |
79 | 34, 50, 77, 78 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈
𝐿1) |
80 | 22, 79 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) ∈
𝐿1) |
81 | | dvcn 25085 |
. . . . 5
⊢
(((ℝ ⊆ ℂ ∧ 𝐹:𝐸⟶ℂ ∧ 𝐸 ⊆ ℝ) ∧ dom (ℝ D 𝐹) = 𝐸) → 𝐹 ∈ (𝐸–cn→ℂ)) |
82 | 11, 12, 4, 39, 81 | syl31anc 1372 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝐸–cn→ℂ)) |
83 | | rescncf 24060 |
. . . . 5
⊢ ((𝐴[,]𝐵) ⊆ 𝐸 → (𝐹 ∈ (𝐸–cn→ℂ) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))) |
84 | 25, 83 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐹 ∈ (𝐸–cn→ℂ) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))) |
85 | 82, 84 | mpd 15 |
. . 3
⊢ (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
86 | 6, 8, 9, 30, 80, 85 | ftc2 25208 |
. 2
⊢ (𝜑 → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴))) |
87 | 22 | fveq1d 6776 |
. . . . 5
⊢ (𝜑 → ((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑡)) |
88 | | fvres 6793 |
. . . . 5
⊢ (𝑡 ∈ (𝐴(,)𝐵) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑡) = ((ℝ D 𝐹)‘𝑡)) |
89 | 87, 88 | sylan9eq 2798 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = ((ℝ D 𝐹)‘𝑡)) |
90 | 89 | ralrimiva 3103 |
. . 3
⊢ (𝜑 → ∀𝑡 ∈ (𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = ((ℝ D 𝐹)‘𝑡)) |
91 | | itgeq2 24942 |
. . 3
⊢
(∀𝑡 ∈
(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = ((ℝ D 𝐹)‘𝑡) → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡) |
92 | 90, 91 | syl 17 |
. 2
⊢ (𝜑 → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡) |
93 | 6 | rexrd 11025 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
94 | 8 | rexrd 11025 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
95 | | ubicc2 13197 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
96 | 93, 94, 9, 95 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
97 | 96 | fvresd 6794 |
. . 3
⊢ (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) = (𝐹‘𝐵)) |
98 | | lbicc2 13196 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
99 | 93, 94, 9, 98 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
100 | 99 | fvresd 6794 |
. . 3
⊢ (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴) = (𝐹‘𝐴)) |
101 | 97, 100 | oveq12d 7293 |
. 2
⊢ (𝜑 → (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴)) = ((𝐹‘𝐵) − (𝐹‘𝐴))) |
102 | 86, 92, 101 | 3eqtr3d 2786 |
1
⊢ (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹‘𝐵) − (𝐹‘𝐴))) |