Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc2re Structured version   Visualization version   GIF version

Theorem ftc2re 31768
Description: The Fundamental Theorem of Calculus, part two, for functions continuous on 𝐷. (Contributed by Thierry Arnoux, 1-Dec-2021.)
Hypotheses
Ref Expression
ftc2re.e 𝐸 = (𝐶(,)𝐷)
ftc2re.a (𝜑𝐴𝐸)
ftc2re.b (𝜑𝐵𝐸)
ftc2re.le (𝜑𝐴𝐵)
ftc2re.f (𝜑𝐹:𝐸⟶ℂ)
ftc2re.1 (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℂ))
Assertion
Ref Expression
ftc2re (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝑡,𝐹   𝜑,𝑡
Allowed substitution hints:   𝐶(𝑡)   𝐷(𝑡)   𝐸(𝑡)

Proof of Theorem ftc2re
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc2re.e . . . . . 6 𝐸 = (𝐶(,)𝐷)
2 ioossre 12786 . . . . . 6 (𝐶(,)𝐷) ⊆ ℝ
31, 2eqsstri 3998 . . . . 5 𝐸 ⊆ ℝ
43a1i 11 . . . 4 (𝜑𝐸 ⊆ ℝ)
5 ftc2re.a . . . 4 (𝜑𝐴𝐸)
64, 5sseldd 3965 . . 3 (𝜑𝐴 ∈ ℝ)
7 ftc2re.b . . . 4 (𝜑𝐵𝐸)
84, 7sseldd 3965 . . 3 (𝜑𝐵 ∈ ℝ)
9 ftc2re.le . . 3 (𝜑𝐴𝐵)
10 ax-resscn 10582 . . . . . . 7 ℝ ⊆ ℂ
1110a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
12 ftc2re.f . . . . . 6 (𝜑𝐹:𝐸⟶ℂ)
13 iccssre 12806 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
146, 8, 13syl2anc 584 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
15 eqid 2818 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1615tgioo2 23338 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
1715, 16dvres 24436 . . . . . 6 (((ℝ ⊆ ℂ ∧ 𝐹:𝐸⟶ℂ) ∧ (𝐸 ⊆ ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
1811, 12, 4, 14, 17syl22anc 834 . . . . 5 (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
19 iccntr 23356 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
206, 8, 19syl2anc 584 . . . . . 6 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2120reseq2d 5846 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)))
2218, 21eqtrd 2853 . . . 4 (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)))
23 ioossicc 12810 . . . . . . 7 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
2423a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
251, 5, 7fct2relem 31767 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸)
2624, 25sstrd 3974 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐸)
27 ftc2re.1 . . . . 5 (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℂ))
28 rescncf 23432 . . . . 5 ((𝐴(,)𝐵) ⊆ 𝐸 → ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)))
2926, 27, 28sylc 65 . . . 4 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
3022, 29eqeltrd 2910 . . 3 (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
31 ioombl 24093 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
3231a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
33 cnmbf 24187 . . . . . 6 (((𝐴(,)𝐵) ∈ dom vol ∧ ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ MblFn)
3432, 29, 33syl2anc 584 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ MblFn)
35 dmres 5868 . . . . . . 7 dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = ((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹))
3635fveq2i 6666 . . . . . 6 (vol‘dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) = (vol‘((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹)))
37 cncff 23428 . . . . . . . . . . . 12 ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → (ℝ D 𝐹):𝐸⟶ℂ)
3827, 37syl 17 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹):𝐸⟶ℂ)
3938fdmd 6516 . . . . . . . . . 10 (𝜑 → dom (ℝ D 𝐹) = 𝐸)
4039ineq2d 4186 . . . . . . . . 9 (𝜑 → ((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹)) = ((𝐴(,)𝐵) ∩ 𝐸))
41 df-ss 3949 . . . . . . . . . 10 ((𝐴(,)𝐵) ⊆ 𝐸 ↔ ((𝐴(,)𝐵) ∩ 𝐸) = (𝐴(,)𝐵))
4226, 41sylib 219 . . . . . . . . 9 (𝜑 → ((𝐴(,)𝐵) ∩ 𝐸) = (𝐴(,)𝐵))
4340, 42eqtrd 2853 . . . . . . . 8 (𝜑 → ((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹)) = (𝐴(,)𝐵))
4443fveq2d 6667 . . . . . . 7 (𝜑 → (vol‘((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹))) = (vol‘(𝐴(,)𝐵)))
45 volioo 24097 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
466, 8, 9, 45syl3anc 1363 . . . . . . . 8 (𝜑 → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
478, 6resubcld 11056 . . . . . . . 8 (𝜑 → (𝐵𝐴) ∈ ℝ)
4846, 47eqeltrd 2910 . . . . . . 7 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
4944, 48eqeltrd 2910 . . . . . 6 (𝜑 → (vol‘((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹))) ∈ ℝ)
5036, 49eqeltrid 2914 . . . . 5 (𝜑 → (vol‘dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) ∈ ℝ)
51 rescncf 23432 . . . . . . . . 9 ((𝐴[,]𝐵) ⊆ 𝐸 → ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
5225, 51syl 17 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
5327, 52mpd 15 . . . . . . 7 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
54 cniccbdd 23989 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥)
556, 8, 53, 54syl3anc 1363 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥)
5635, 43syl5eq 2865 . . . . . . . . . . 11 (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (𝐴(,)𝐵))
5756, 24eqsstrd 4002 . . . . . . . . . 10 (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵))
58 ssralv 4030 . . . . . . . . . 10 (dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥))
5957, 58syl 17 . . . . . . . . 9 (𝜑 → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥))
6059adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥))
6157adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵))
6261sselda 3964 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → 𝑦 ∈ (𝐴[,]𝐵))
63 fvres 6682 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐴[,]𝐵) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
6462, 63syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
65 simpr 485 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)))
6656ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (𝐴(,)𝐵))
6765, 66eleqtrd 2912 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → 𝑦 ∈ (𝐴(,)𝐵))
68 fvres 6682 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐴(,)𝐵) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
6967, 68syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
7064, 69eqtr4d 2856 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦) = (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦))
7170fveq2d 6667 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) = (abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)))
7271breq1d 5067 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → ((abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 ↔ (abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7372biimpd 230 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → ((abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → (abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7473ralimdva 3174 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7560, 74syld 47 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7675reximdva 3271 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7755, 76mpd 15 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥)
78 bddibl 24367 . . . . 5 ((((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ MblFn ∧ (vol‘dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ 𝐿1)
7934, 50, 77, 78syl3anc 1363 . . . 4 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ 𝐿1)
8022, 79eqeltrd 2910 . . 3 (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) ∈ 𝐿1)
81 dvcn 24445 . . . . 5 (((ℝ ⊆ ℂ ∧ 𝐹:𝐸⟶ℂ ∧ 𝐸 ⊆ ℝ) ∧ dom (ℝ D 𝐹) = 𝐸) → 𝐹 ∈ (𝐸cn→ℂ))
8211, 12, 4, 39, 81syl31anc 1365 . . . 4 (𝜑𝐹 ∈ (𝐸cn→ℂ))
83 rescncf 23432 . . . . 5 ((𝐴[,]𝐵) ⊆ 𝐸 → (𝐹 ∈ (𝐸cn→ℂ) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
8425, 83syl 17 . . . 4 (𝜑 → (𝐹 ∈ (𝐸cn→ℂ) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
8582, 84mpd 15 . . 3 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
866, 8, 9, 30, 80, 85ftc2 24568 . 2 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴)))
8722fveq1d 6665 . . . . 5 (𝜑 → ((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑡))
88 fvres 6682 . . . . 5 (𝑡 ∈ (𝐴(,)𝐵) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
8987, 88sylan9eq 2873 . . . 4 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
9089ralrimiva 3179 . . 3 (𝜑 → ∀𝑡 ∈ (𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
91 itgeq2 24305 . . 3 (∀𝑡 ∈ (𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = ((ℝ D 𝐹)‘𝑡) → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
9290, 91syl 17 . 2 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
936rexrd 10679 . . . . 5 (𝜑𝐴 ∈ ℝ*)
948rexrd 10679 . . . . 5 (𝜑𝐵 ∈ ℝ*)
95 ubicc2 12841 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
9693, 94, 9, 95syl3anc 1363 . . . 4 (𝜑𝐵 ∈ (𝐴[,]𝐵))
9796fvresd 6683 . . 3 (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) = (𝐹𝐵))
98 lbicc2 12840 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
9993, 94, 9, 98syl3anc 1363 . . . 4 (𝜑𝐴 ∈ (𝐴[,]𝐵))
10099fvresd 6683 . . 3 (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴) = (𝐹𝐴))
10197, 100oveq12d 7163 . 2 (𝜑 → (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴)) = ((𝐹𝐵) − (𝐹𝐴)))
10286, 92, 1013eqtr3d 2861 1 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wral 3135  wrex 3136  cin 3932  wss 3933   class class class wbr 5057  dom cdm 5548  ran crn 5549  cres 5550  wf 6344  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  *cxr 10662  cle 10664  cmin 10858  (,)cioo 12726  [,]cicc 12729  abscabs 14581  TopOpenctopn 16683  topGenctg 16699  fldccnfld 20473  intcnt 21553  cnccncf 23411  volcvol 23991  MblFncmbf 24142  𝐿1cibl 24145  citg 24146   D cdv 24388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cc 9845  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-symdif 4216  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-ofr 7399  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-omul 8096  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-acn 9359  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-cmp 21923  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-ovol 23992  df-vol 23993  df-mbf 24147  df-itg1 24148  df-itg2 24149  df-ibl 24150  df-itg 24151  df-0p 24198  df-limc 24391  df-dv 24392
This theorem is referenced by:  fdvposlt  31769  fdvposle  31771  itgexpif  31776
  Copyright terms: Public domain W3C validator