Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fdvneggt | Structured version Visualization version GIF version |
Description: Functions with a negative derivative, i.e. monotonously decreasing functions, inverse strict ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
Ref | Expression |
---|---|
fdvposlt.d | ⊢ 𝐸 = (𝐶(,)𝐷) |
fdvposlt.a | ⊢ (𝜑 → 𝐴 ∈ 𝐸) |
fdvposlt.b | ⊢ (𝜑 → 𝐵 ∈ 𝐸) |
fdvposlt.f | ⊢ (𝜑 → 𝐹:𝐸⟶ℝ) |
fdvposlt.c | ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℝ)) |
fdvneggt.lt | ⊢ (𝜑 → 𝐴 < 𝐵) |
fdvneggt.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) < 0) |
Ref | Expression |
---|---|
fdvneggt | ⊢ (𝜑 → (𝐹‘𝐵) < (𝐹‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdvposlt.d | . . . 4 ⊢ 𝐸 = (𝐶(,)𝐷) | |
2 | fdvposlt.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐸) | |
3 | fdvposlt.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐸) | |
4 | fdvposlt.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐸⟶ℝ) | |
5 | 4 | ffvelrnda 6943 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐸) → (𝐹‘𝑦) ∈ ℝ) |
6 | 5 | renegcld 11332 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐸) → -(𝐹‘𝑦) ∈ ℝ) |
7 | 6 | fmpttd 6971 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦)):𝐸⟶ℝ) |
8 | reelprrecn 10894 | . . . . . . 7 ⊢ ℝ ∈ {ℝ, ℂ} | |
9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) |
10 | ax-resscn 10859 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
11 | 10, 5 | sselid 3915 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐸) → (𝐹‘𝑦) ∈ ℂ) |
12 | fvexd 6771 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐸) → ((ℝ D 𝐹)‘𝑦) ∈ V) | |
13 | 4 | feqmptd 6819 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ 𝐸 ↦ (𝐹‘𝑦))) |
14 | 13 | oveq2d 7271 | . . . . . . 7 ⊢ (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑦 ∈ 𝐸 ↦ (𝐹‘𝑦)))) |
15 | fdvposlt.c | . . . . . . . . 9 ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℝ)) | |
16 | cncff 23962 | . . . . . . . . 9 ⊢ ((ℝ D 𝐹) ∈ (𝐸–cn→ℝ) → (ℝ D 𝐹):𝐸⟶ℝ) | |
17 | 15, 16 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (ℝ D 𝐹):𝐸⟶ℝ) |
18 | 17 | feqmptd 6819 | . . . . . . 7 ⊢ (𝜑 → (ℝ D 𝐹) = (𝑦 ∈ 𝐸 ↦ ((ℝ D 𝐹)‘𝑦))) |
19 | 14, 18 | eqtr3d 2780 | . . . . . 6 ⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐸 ↦ (𝐹‘𝑦))) = (𝑦 ∈ 𝐸 ↦ ((ℝ D 𝐹)‘𝑦))) |
20 | 9, 11, 12, 19 | dvmptneg 25035 | . . . . 5 ⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦))) = (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦))) |
21 | 17 | ffvelrnda 6943 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐸) → ((ℝ D 𝐹)‘𝑦) ∈ ℝ) |
22 | 21 | renegcld 11332 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐸) → -((ℝ D 𝐹)‘𝑦) ∈ ℝ) |
23 | 22 | fmpttd 6971 | . . . . . 6 ⊢ (𝜑 → (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)):𝐸⟶ℝ) |
24 | ssid 3939 | . . . . . . . . . 10 ⊢ ℂ ⊆ ℂ | |
25 | cncfss 23968 | . . . . . . . . . 10 ⊢ ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐸–cn→ℝ) ⊆ (𝐸–cn→ℂ)) | |
26 | 10, 24, 25 | mp2an 688 | . . . . . . . . 9 ⊢ (𝐸–cn→ℝ) ⊆ (𝐸–cn→ℂ) |
27 | 26, 15 | sselid 3915 | . . . . . . . 8 ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℂ)) |
28 | eqid 2738 | . . . . . . . . 9 ⊢ (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) = (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) | |
29 | 28 | negfcncf 23992 | . . . . . . . 8 ⊢ ((ℝ D 𝐹) ∈ (𝐸–cn→ℂ) → (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸–cn→ℂ)) |
30 | 27, 29 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸–cn→ℂ)) |
31 | cncffvrn 23967 | . . . . . . 7 ⊢ ((ℝ ⊆ ℂ ∧ (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸–cn→ℂ)) → ((𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸–cn→ℝ) ↔ (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)):𝐸⟶ℝ)) | |
32 | 10, 30, 31 | sylancr 586 | . . . . . 6 ⊢ (𝜑 → ((𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸–cn→ℝ) ↔ (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)):𝐸⟶ℝ)) |
33 | 23, 32 | mpbird 256 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸–cn→ℝ)) |
34 | 20, 33 | eqeltrd 2839 | . . . 4 ⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦))) ∈ (𝐸–cn→ℝ)) |
35 | fdvneggt.lt | . . . 4 ⊢ (𝜑 → 𝐴 < 𝐵) | |
36 | fdvneggt.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) < 0) | |
37 | 17 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (ℝ D 𝐹):𝐸⟶ℝ) |
38 | ioossicc 13094 | . . . . . . . . . . 11 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
39 | 38 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
40 | 1, 2, 3 | fct2relem 32477 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸) |
41 | 39, 40 | sstrd 3927 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐸) |
42 | 41 | sselda 3917 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ 𝐸) |
43 | 37, 42 | ffvelrnd 6944 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ) |
44 | 43 | lt0neg1d 11474 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑥) < 0 ↔ 0 < -((ℝ D 𝐹)‘𝑥))) |
45 | 36, 44 | mpbid 231 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 < -((ℝ D 𝐹)‘𝑥)) |
46 | 20 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (ℝ D (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦))) = (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦))) |
47 | 46 | fveq1d 6758 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦)))‘𝑥) = ((𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦))‘𝑥)) |
48 | 28 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) = (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦))) |
49 | simpr 484 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥) | |
50 | 49 | fveq2d 6760 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑥) → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘𝑥)) |
51 | 50 | negeqd 11145 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑥) → -((ℝ D 𝐹)‘𝑦) = -((ℝ D 𝐹)‘𝑥)) |
52 | 43 | renegcld 11332 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → -((ℝ D 𝐹)‘𝑥) ∈ ℝ) |
53 | 48, 51, 42, 52 | fvmptd 6864 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦))‘𝑥) = -((ℝ D 𝐹)‘𝑥)) |
54 | 47, 53 | eqtrd 2778 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦)))‘𝑥) = -((ℝ D 𝐹)‘𝑥)) |
55 | 45, 54 | breqtrrd 5098 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 < ((ℝ D (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦)))‘𝑥)) |
56 | 1, 2, 3, 7, 34, 35, 55 | fdvposlt 32479 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦))‘𝐴) < ((𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦))‘𝐵)) |
57 | eqidd 2739 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦)) = (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦))) | |
58 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴) | |
59 | 58 | fveq2d 6760 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → (𝐹‘𝑦) = (𝐹‘𝐴)) |
60 | 59 | negeqd 11145 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → -(𝐹‘𝑦) = -(𝐹‘𝐴)) |
61 | 4, 2 | ffvelrnd 6944 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
62 | 61 | renegcld 11332 | . . . 4 ⊢ (𝜑 → -(𝐹‘𝐴) ∈ ℝ) |
63 | 57, 60, 2, 62 | fvmptd 6864 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦))‘𝐴) = -(𝐹‘𝐴)) |
64 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) | |
65 | 64 | fveq2d 6760 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → (𝐹‘𝑦) = (𝐹‘𝐵)) |
66 | 65 | negeqd 11145 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → -(𝐹‘𝑦) = -(𝐹‘𝐵)) |
67 | 4, 3 | ffvelrnd 6944 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐵) ∈ ℝ) |
68 | 67 | renegcld 11332 | . . . 4 ⊢ (𝜑 → -(𝐹‘𝐵) ∈ ℝ) |
69 | 57, 66, 3, 68 | fvmptd 6864 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦))‘𝐵) = -(𝐹‘𝐵)) |
70 | 56, 63, 69 | 3brtr3d 5101 | . 2 ⊢ (𝜑 → -(𝐹‘𝐴) < -(𝐹‘𝐵)) |
71 | 67, 61 | ltnegd 11483 | . 2 ⊢ (𝜑 → ((𝐹‘𝐵) < (𝐹‘𝐴) ↔ -(𝐹‘𝐴) < -(𝐹‘𝐵))) |
72 | 70, 71 | mpbird 256 | 1 ⊢ (𝜑 → (𝐹‘𝐵) < (𝐹‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 {cpr 4560 class class class wbr 5070 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 < clt 10940 -cneg 11136 (,)cioo 13008 [,]cicc 13011 –cn→ccncf 23945 D cdv 24932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cc 10122 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-symdif 4173 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-cmp 22446 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-ovol 24533 df-vol 24534 df-mbf 24688 df-itg1 24689 df-itg2 24690 df-ibl 24691 df-itg 24692 df-0p 24739 df-limc 24935 df-dv 24936 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |