Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdvneggt Structured version   Visualization version   GIF version

Theorem fdvneggt 32559
Description: Functions with a negative derivative, i.e. monotonously decreasing functions, inverse strict ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.)
Hypotheses
Ref Expression
fdvposlt.d 𝐸 = (𝐶(,)𝐷)
fdvposlt.a (𝜑𝐴𝐸)
fdvposlt.b (𝜑𝐵𝐸)
fdvposlt.f (𝜑𝐹:𝐸⟶ℝ)
fdvposlt.c (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℝ))
fdvneggt.lt (𝜑𝐴 < 𝐵)
fdvneggt.1 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) < 0)
Assertion
Ref Expression
fdvneggt (𝜑 → (𝐹𝐵) < (𝐹𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐸   𝑥,𝐹   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem fdvneggt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fdvposlt.d . . . 4 𝐸 = (𝐶(,)𝐷)
2 fdvposlt.a . . . 4 (𝜑𝐴𝐸)
3 fdvposlt.b . . . 4 (𝜑𝐵𝐸)
4 fdvposlt.f . . . . . . 7 (𝜑𝐹:𝐸⟶ℝ)
54ffvelrnda 6955 . . . . . 6 ((𝜑𝑦𝐸) → (𝐹𝑦) ∈ ℝ)
65renegcld 11385 . . . . 5 ((𝜑𝑦𝐸) → -(𝐹𝑦) ∈ ℝ)
76fmpttd 6983 . . . 4 (𝜑 → (𝑦𝐸 ↦ -(𝐹𝑦)):𝐸⟶ℝ)
8 reelprrecn 10947 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
98a1i 11 . . . . . 6 (𝜑 → ℝ ∈ {ℝ, ℂ})
10 ax-resscn 10912 . . . . . . 7 ℝ ⊆ ℂ
1110, 5sselid 3923 . . . . . 6 ((𝜑𝑦𝐸) → (𝐹𝑦) ∈ ℂ)
12 fvexd 6783 . . . . . 6 ((𝜑𝑦𝐸) → ((ℝ D 𝐹)‘𝑦) ∈ V)
134feqmptd 6831 . . . . . . . 8 (𝜑𝐹 = (𝑦𝐸 ↦ (𝐹𝑦)))
1413oveq2d 7284 . . . . . . 7 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑦𝐸 ↦ (𝐹𝑦))))
15 fdvposlt.c . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℝ))
16 cncff 24037 . . . . . . . . 9 ((ℝ D 𝐹) ∈ (𝐸cn→ℝ) → (ℝ D 𝐹):𝐸⟶ℝ)
1715, 16syl 17 . . . . . . . 8 (𝜑 → (ℝ D 𝐹):𝐸⟶ℝ)
1817feqmptd 6831 . . . . . . 7 (𝜑 → (ℝ D 𝐹) = (𝑦𝐸 ↦ ((ℝ D 𝐹)‘𝑦)))
1914, 18eqtr3d 2781 . . . . . 6 (𝜑 → (ℝ D (𝑦𝐸 ↦ (𝐹𝑦))) = (𝑦𝐸 ↦ ((ℝ D 𝐹)‘𝑦)))
209, 11, 12, 19dvmptneg 25111 . . . . 5 (𝜑 → (ℝ D (𝑦𝐸 ↦ -(𝐹𝑦))) = (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)))
2117ffvelrnda 6955 . . . . . . . 8 ((𝜑𝑦𝐸) → ((ℝ D 𝐹)‘𝑦) ∈ ℝ)
2221renegcld 11385 . . . . . . 7 ((𝜑𝑦𝐸) → -((ℝ D 𝐹)‘𝑦) ∈ ℝ)
2322fmpttd 6983 . . . . . 6 (𝜑 → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)):𝐸⟶ℝ)
24 ssid 3947 . . . . . . . . . 10 ℂ ⊆ ℂ
25 cncfss 24043 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐸cn→ℝ) ⊆ (𝐸cn→ℂ))
2610, 24, 25mp2an 688 . . . . . . . . 9 (𝐸cn→ℝ) ⊆ (𝐸cn→ℂ)
2726, 15sselid 3923 . . . . . . . 8 (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℂ))
28 eqid 2739 . . . . . . . . 9 (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) = (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦))
2928negfcncf 24067 . . . . . . . 8 ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℂ))
3027, 29syl 17 . . . . . . 7 (𝜑 → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℂ))
31 cncffvrn 24042 . . . . . . 7 ((ℝ ⊆ ℂ ∧ (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℂ)) → ((𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℝ) ↔ (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)):𝐸⟶ℝ))
3210, 30, 31sylancr 586 . . . . . 6 (𝜑 → ((𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℝ) ↔ (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)):𝐸⟶ℝ))
3323, 32mpbird 256 . . . . 5 (𝜑 → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℝ))
3420, 33eqeltrd 2840 . . . 4 (𝜑 → (ℝ D (𝑦𝐸 ↦ -(𝐹𝑦))) ∈ (𝐸cn→ℝ))
35 fdvneggt.lt . . . 4 (𝜑𝐴 < 𝐵)
36 fdvneggt.1 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) < 0)
3717adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (ℝ D 𝐹):𝐸⟶ℝ)
38 ioossicc 13147 . . . . . . . . . . 11 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
3938a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
401, 2, 3fct2relem 32556 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸)
4139, 40sstrd 3935 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐸)
4241sselda 3925 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥𝐸)
4337, 42ffvelrnd 6956 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
4443lt0neg1d 11527 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑥) < 0 ↔ 0 < -((ℝ D 𝐹)‘𝑥)))
4536, 44mpbid 231 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < -((ℝ D 𝐹)‘𝑥))
4620adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (ℝ D (𝑦𝐸 ↦ -(𝐹𝑦))) = (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)))
4746fveq1d 6770 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑦𝐸 ↦ -(𝐹𝑦)))‘𝑥) = ((𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦))‘𝑥))
4828a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) = (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)))
49 simpr 484 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
5049fveq2d 6772 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑥) → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘𝑥))
5150negeqd 11198 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑥) → -((ℝ D 𝐹)‘𝑦) = -((ℝ D 𝐹)‘𝑥))
5243renegcld 11385 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -((ℝ D 𝐹)‘𝑥) ∈ ℝ)
5348, 51, 42, 52fvmptd 6876 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦))‘𝑥) = -((ℝ D 𝐹)‘𝑥))
5447, 53eqtrd 2779 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑦𝐸 ↦ -(𝐹𝑦)))‘𝑥) = -((ℝ D 𝐹)‘𝑥))
5545, 54breqtrrd 5106 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < ((ℝ D (𝑦𝐸 ↦ -(𝐹𝑦)))‘𝑥))
561, 2, 3, 7, 34, 35, 55fdvposlt 32558 . . 3 (𝜑 → ((𝑦𝐸 ↦ -(𝐹𝑦))‘𝐴) < ((𝑦𝐸 ↦ -(𝐹𝑦))‘𝐵))
57 eqidd 2740 . . . 4 (𝜑 → (𝑦𝐸 ↦ -(𝐹𝑦)) = (𝑦𝐸 ↦ -(𝐹𝑦)))
58 simpr 484 . . . . . 6 ((𝜑𝑦 = 𝐴) → 𝑦 = 𝐴)
5958fveq2d 6772 . . . . 5 ((𝜑𝑦 = 𝐴) → (𝐹𝑦) = (𝐹𝐴))
6059negeqd 11198 . . . 4 ((𝜑𝑦 = 𝐴) → -(𝐹𝑦) = -(𝐹𝐴))
614, 2ffvelrnd 6956 . . . . 5 (𝜑 → (𝐹𝐴) ∈ ℝ)
6261renegcld 11385 . . . 4 (𝜑 → -(𝐹𝐴) ∈ ℝ)
6357, 60, 2, 62fvmptd 6876 . . 3 (𝜑 → ((𝑦𝐸 ↦ -(𝐹𝑦))‘𝐴) = -(𝐹𝐴))
64 simpr 484 . . . . . 6 ((𝜑𝑦 = 𝐵) → 𝑦 = 𝐵)
6564fveq2d 6772 . . . . 5 ((𝜑𝑦 = 𝐵) → (𝐹𝑦) = (𝐹𝐵))
6665negeqd 11198 . . . 4 ((𝜑𝑦 = 𝐵) → -(𝐹𝑦) = -(𝐹𝐵))
674, 3ffvelrnd 6956 . . . . 5 (𝜑 → (𝐹𝐵) ∈ ℝ)
6867renegcld 11385 . . . 4 (𝜑 → -(𝐹𝐵) ∈ ℝ)
6957, 66, 3, 68fvmptd 6876 . . 3 (𝜑 → ((𝑦𝐸 ↦ -(𝐹𝑦))‘𝐵) = -(𝐹𝐵))
7056, 63, 693brtr3d 5109 . 2 (𝜑 → -(𝐹𝐴) < -(𝐹𝐵))
7167, 61ltnegd 11536 . 2 (𝜑 → ((𝐹𝐵) < (𝐹𝐴) ↔ -(𝐹𝐴) < -(𝐹𝐵)))
7270, 71mpbird 256 1 (𝜑 → (𝐹𝐵) < (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  Vcvv 3430  wss 3891  {cpr 4568   class class class wbr 5078  cmpt 5161  wf 6426  cfv 6430  (class class class)co 7268  cc 10853  cr 10854  0cc0 10855   < clt 10993  -cneg 11189  (,)cioo 13061  [,]cicc 13064  cnccncf 24020   D cdv 25008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-cc 10175  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933  ax-addf 10934  ax-mulf 10935
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-symdif 4181  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-disj 5044  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-ofr 7525  df-om 7701  df-1st 7817  df-2nd 7818  df-supp 7962  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-oadd 8285  df-omul 8286  df-er 8472  df-map 8591  df-pm 8592  df-ixp 8660  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fsupp 9090  df-fi 9131  df-sup 9162  df-inf 9163  df-oi 9230  df-dju 9643  df-card 9681  df-acn 9684  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-q 12671  df-rp 12713  df-xneg 12830  df-xadd 12831  df-xmul 12832  df-ioo 13065  df-ioc 13066  df-ico 13067  df-icc 13068  df-fz 13222  df-fzo 13365  df-fl 13493  df-mod 13571  df-seq 13703  df-exp 13764  df-hash 14026  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-limsup 15161  df-clim 15178  df-rlim 15179  df-sum 15379  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-starv 16958  df-sca 16959  df-vsca 16960  df-ip 16961  df-tset 16962  df-ple 16963  df-ds 16965  df-unif 16966  df-hom 16967  df-cco 16968  df-rest 17114  df-topn 17115  df-0g 17133  df-gsum 17134  df-topgen 17135  df-pt 17136  df-prds 17139  df-xrs 17194  df-qtop 17199  df-imas 17200  df-xps 17202  df-mre 17276  df-mrc 17277  df-acs 17279  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-submnd 18412  df-mulg 18682  df-cntz 18904  df-cmn 19369  df-psmet 20570  df-xmet 20571  df-met 20572  df-bl 20573  df-mopn 20574  df-fbas 20575  df-fg 20576  df-cnfld 20579  df-top 22024  df-topon 22041  df-topsp 22063  df-bases 22077  df-cld 22151  df-ntr 22152  df-cls 22153  df-nei 22230  df-lp 22268  df-perf 22269  df-cn 22359  df-cnp 22360  df-haus 22447  df-cmp 22519  df-tx 22694  df-hmeo 22887  df-fil 22978  df-fm 23070  df-flim 23071  df-flf 23072  df-xms 23454  df-ms 23455  df-tms 23456  df-cncf 24022  df-ovol 24609  df-vol 24610  df-mbf 24764  df-itg1 24765  df-itg2 24766  df-ibl 24767  df-itg 24768  df-0p 24815  df-limc 25011  df-dv 25012
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator