Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdvneggt Structured version   Visualization version   GIF version

Theorem fdvneggt 31480
Description: Functions with a negative derivative, i.e. monotonously decreasing functions, inverse strict ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.)
Hypotheses
Ref Expression
fdvposlt.d 𝐸 = (𝐶(,)𝐷)
fdvposlt.a (𝜑𝐴𝐸)
fdvposlt.b (𝜑𝐵𝐸)
fdvposlt.f (𝜑𝐹:𝐸⟶ℝ)
fdvposlt.c (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℝ))
fdvneggt.lt (𝜑𝐴 < 𝐵)
fdvneggt.1 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) < 0)
Assertion
Ref Expression
fdvneggt (𝜑 → (𝐹𝐵) < (𝐹𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐸   𝑥,𝐹   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem fdvneggt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fdvposlt.d . . . 4 𝐸 = (𝐶(,)𝐷)
2 fdvposlt.a . . . 4 (𝜑𝐴𝐸)
3 fdvposlt.b . . . 4 (𝜑𝐵𝐸)
4 fdvposlt.f . . . . . . 7 (𝜑𝐹:𝐸⟶ℝ)
54ffvelrnda 6670 . . . . . 6 ((𝜑𝑦𝐸) → (𝐹𝑦) ∈ ℝ)
65renegcld 10860 . . . . 5 ((𝜑𝑦𝐸) → -(𝐹𝑦) ∈ ℝ)
76fmpttd 6696 . . . 4 (𝜑 → (𝑦𝐸 ↦ -(𝐹𝑦)):𝐸⟶ℝ)
8 reelprrecn 10419 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
98a1i 11 . . . . . 6 (𝜑 → ℝ ∈ {ℝ, ℂ})
10 ax-resscn 10384 . . . . . . 7 ℝ ⊆ ℂ
1110, 5sseldi 3852 . . . . . 6 ((𝜑𝑦𝐸) → (𝐹𝑦) ∈ ℂ)
12 fvexd 6508 . . . . . 6 ((𝜑𝑦𝐸) → ((ℝ D 𝐹)‘𝑦) ∈ V)
134feqmptd 6556 . . . . . . . 8 (𝜑𝐹 = (𝑦𝐸 ↦ (𝐹𝑦)))
1413oveq2d 6986 . . . . . . 7 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑦𝐸 ↦ (𝐹𝑦))))
15 fdvposlt.c . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℝ))
16 cncff 23194 . . . . . . . . 9 ((ℝ D 𝐹) ∈ (𝐸cn→ℝ) → (ℝ D 𝐹):𝐸⟶ℝ)
1715, 16syl 17 . . . . . . . 8 (𝜑 → (ℝ D 𝐹):𝐸⟶ℝ)
1817feqmptd 6556 . . . . . . 7 (𝜑 → (ℝ D 𝐹) = (𝑦𝐸 ↦ ((ℝ D 𝐹)‘𝑦)))
1914, 18eqtr3d 2810 . . . . . 6 (𝜑 → (ℝ D (𝑦𝐸 ↦ (𝐹𝑦))) = (𝑦𝐸 ↦ ((ℝ D 𝐹)‘𝑦)))
209, 11, 12, 19dvmptneg 24256 . . . . 5 (𝜑 → (ℝ D (𝑦𝐸 ↦ -(𝐹𝑦))) = (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)))
2117ffvelrnda 6670 . . . . . . . 8 ((𝜑𝑦𝐸) → ((ℝ D 𝐹)‘𝑦) ∈ ℝ)
2221renegcld 10860 . . . . . . 7 ((𝜑𝑦𝐸) → -((ℝ D 𝐹)‘𝑦) ∈ ℝ)
2322fmpttd 6696 . . . . . 6 (𝜑 → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)):𝐸⟶ℝ)
24 ssid 3875 . . . . . . . . . 10 ℂ ⊆ ℂ
25 cncfss 23200 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐸cn→ℝ) ⊆ (𝐸cn→ℂ))
2610, 24, 25mp2an 679 . . . . . . . . 9 (𝐸cn→ℝ) ⊆ (𝐸cn→ℂ)
2726, 15sseldi 3852 . . . . . . . 8 (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℂ))
28 eqid 2772 . . . . . . . . 9 (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) = (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦))
2928negfcncf 23220 . . . . . . . 8 ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℂ))
3027, 29syl 17 . . . . . . 7 (𝜑 → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℂ))
31 cncffvrn 23199 . . . . . . 7 ((ℝ ⊆ ℂ ∧ (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℂ)) → ((𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℝ) ↔ (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)):𝐸⟶ℝ))
3210, 30, 31sylancr 578 . . . . . 6 (𝜑 → ((𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℝ) ↔ (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)):𝐸⟶ℝ))
3323, 32mpbird 249 . . . . 5 (𝜑 → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℝ))
3420, 33eqeltrd 2860 . . . 4 (𝜑 → (ℝ D (𝑦𝐸 ↦ -(𝐹𝑦))) ∈ (𝐸cn→ℝ))
35 fdvneggt.lt . . . 4 (𝜑𝐴 < 𝐵)
36 fdvneggt.1 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) < 0)
3717adantr 473 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (ℝ D 𝐹):𝐸⟶ℝ)
38 ioossicc 12631 . . . . . . . . . . 11 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
3938a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
401, 2, 3fct2relem 31477 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸)
4139, 40sstrd 3864 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐸)
4241sselda 3854 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥𝐸)
4337, 42ffvelrnd 6671 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
4443lt0neg1d 11002 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑥) < 0 ↔ 0 < -((ℝ D 𝐹)‘𝑥)))
4536, 44mpbid 224 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < -((ℝ D 𝐹)‘𝑥))
4620adantr 473 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (ℝ D (𝑦𝐸 ↦ -(𝐹𝑦))) = (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)))
4746fveq1d 6495 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑦𝐸 ↦ -(𝐹𝑦)))‘𝑥) = ((𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦))‘𝑥))
4828a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) = (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)))
49 simpr 477 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
5049fveq2d 6497 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑥) → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘𝑥))
5150negeqd 10672 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑥) → -((ℝ D 𝐹)‘𝑦) = -((ℝ D 𝐹)‘𝑥))
5243renegcld 10860 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -((ℝ D 𝐹)‘𝑥) ∈ ℝ)
5348, 51, 42, 52fvmptd 6595 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦))‘𝑥) = -((ℝ D 𝐹)‘𝑥))
5447, 53eqtrd 2808 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑦𝐸 ↦ -(𝐹𝑦)))‘𝑥) = -((ℝ D 𝐹)‘𝑥))
5545, 54breqtrrd 4951 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < ((ℝ D (𝑦𝐸 ↦ -(𝐹𝑦)))‘𝑥))
561, 2, 3, 7, 34, 35, 55fdvposlt 31479 . . 3 (𝜑 → ((𝑦𝐸 ↦ -(𝐹𝑦))‘𝐴) < ((𝑦𝐸 ↦ -(𝐹𝑦))‘𝐵))
57 eqidd 2773 . . . 4 (𝜑 → (𝑦𝐸 ↦ -(𝐹𝑦)) = (𝑦𝐸 ↦ -(𝐹𝑦)))
58 simpr 477 . . . . . 6 ((𝜑𝑦 = 𝐴) → 𝑦 = 𝐴)
5958fveq2d 6497 . . . . 5 ((𝜑𝑦 = 𝐴) → (𝐹𝑦) = (𝐹𝐴))
6059negeqd 10672 . . . 4 ((𝜑𝑦 = 𝐴) → -(𝐹𝑦) = -(𝐹𝐴))
614, 2ffvelrnd 6671 . . . . 5 (𝜑 → (𝐹𝐴) ∈ ℝ)
6261renegcld 10860 . . . 4 (𝜑 → -(𝐹𝐴) ∈ ℝ)
6357, 60, 2, 62fvmptd 6595 . . 3 (𝜑 → ((𝑦𝐸 ↦ -(𝐹𝑦))‘𝐴) = -(𝐹𝐴))
64 simpr 477 . . . . . 6 ((𝜑𝑦 = 𝐵) → 𝑦 = 𝐵)
6564fveq2d 6497 . . . . 5 ((𝜑𝑦 = 𝐵) → (𝐹𝑦) = (𝐹𝐵))
6665negeqd 10672 . . . 4 ((𝜑𝑦 = 𝐵) → -(𝐹𝑦) = -(𝐹𝐵))
674, 3ffvelrnd 6671 . . . . 5 (𝜑 → (𝐹𝐵) ∈ ℝ)
6867renegcld 10860 . . . 4 (𝜑 → -(𝐹𝐵) ∈ ℝ)
6957, 66, 3, 68fvmptd 6595 . . 3 (𝜑 → ((𝑦𝐸 ↦ -(𝐹𝑦))‘𝐵) = -(𝐹𝐵))
7056, 63, 693brtr3d 4954 . 2 (𝜑 → -(𝐹𝐴) < -(𝐹𝐵))
7167, 61ltnegd 11011 . 2 (𝜑 → ((𝐹𝐵) < (𝐹𝐴) ↔ -(𝐹𝐴) < -(𝐹𝐵)))
7270, 71mpbird 249 1 (𝜑 → (𝐹𝐵) < (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2048  Vcvv 3409  wss 3825  {cpr 4437   class class class wbr 4923  cmpt 5002  wf 6178  cfv 6182  (class class class)co 6970  cc 10325  cr 10326  0cc0 10327   < clt 10466  -cneg 10663  (,)cioo 12547  [,]cicc 12550  cnccncf 23177   D cdv 24154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8890  ax-cc 9647  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405  ax-addf 10406  ax-mulf 10407
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-symdif 4101  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-iin 4789  df-disj 4892  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-se 5360  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-of 7221  df-ofr 7222  df-om 7391  df-1st 7494  df-2nd 7495  df-supp 7627  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-2o 7898  df-oadd 7901  df-omul 7902  df-er 8081  df-map 8200  df-pm 8201  df-ixp 8252  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-fsupp 8621  df-fi 8662  df-sup 8693  df-inf 8694  df-oi 8761  df-dju 9116  df-card 9154  df-acn 9157  df-cda 9380  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-4 11498  df-5 11499  df-6 11500  df-7 11501  df-8 11502  df-9 11503  df-n0 11701  df-z 11787  df-dec 11905  df-uz 12052  df-q 12156  df-rp 12198  df-xneg 12317  df-xadd 12318  df-xmul 12319  df-ioo 12551  df-ioc 12552  df-ico 12553  df-icc 12554  df-fz 12702  df-fzo 12843  df-fl 12970  df-mod 13046  df-seq 13178  df-exp 13238  df-hash 13499  df-cj 14309  df-re 14310  df-im 14311  df-sqrt 14445  df-abs 14446  df-limsup 14679  df-clim 14696  df-rlim 14697  df-sum 14894  df-struct 16331  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-ress 16337  df-plusg 16424  df-mulr 16425  df-starv 16426  df-sca 16427  df-vsca 16428  df-ip 16429  df-tset 16430  df-ple 16431  df-ds 16433  df-unif 16434  df-hom 16435  df-cco 16436  df-rest 16542  df-topn 16543  df-0g 16561  df-gsum 16562  df-topgen 16563  df-pt 16564  df-prds 16567  df-xrs 16621  df-qtop 16626  df-imas 16627  df-xps 16629  df-mre 16705  df-mrc 16706  df-acs 16708  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-submnd 17794  df-mulg 18002  df-cntz 18208  df-cmn 18658  df-psmet 20229  df-xmet 20230  df-met 20231  df-bl 20232  df-mopn 20233  df-fbas 20234  df-fg 20235  df-cnfld 20238  df-top 21196  df-topon 21213  df-topsp 21235  df-bases 21248  df-cld 21321  df-ntr 21322  df-cls 21323  df-nei 21400  df-lp 21438  df-perf 21439  df-cn 21529  df-cnp 21530  df-haus 21617  df-cmp 21689  df-tx 21864  df-hmeo 22057  df-fil 22148  df-fm 22240  df-flim 22241  df-flf 22242  df-xms 22623  df-ms 22624  df-tms 22625  df-cncf 23179  df-ovol 23758  df-vol 23759  df-mbf 23913  df-itg1 23914  df-itg2 23915  df-ibl 23916  df-itg 23917  df-0p 23964  df-limc 24157  df-dv 24158
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator