Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdvneggt Structured version   Visualization version   GIF version

Theorem fdvneggt 31878
Description: Functions with a negative derivative, i.e. monotonously decreasing functions, inverse strict ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.)
Hypotheses
Ref Expression
fdvposlt.d 𝐸 = (𝐶(,)𝐷)
fdvposlt.a (𝜑𝐴𝐸)
fdvposlt.b (𝜑𝐵𝐸)
fdvposlt.f (𝜑𝐹:𝐸⟶ℝ)
fdvposlt.c (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℝ))
fdvneggt.lt (𝜑𝐴 < 𝐵)
fdvneggt.1 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) < 0)
Assertion
Ref Expression
fdvneggt (𝜑 → (𝐹𝐵) < (𝐹𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐸   𝑥,𝐹   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem fdvneggt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fdvposlt.d . . . 4 𝐸 = (𝐶(,)𝐷)
2 fdvposlt.a . . . 4 (𝜑𝐴𝐸)
3 fdvposlt.b . . . 4 (𝜑𝐵𝐸)
4 fdvposlt.f . . . . . . 7 (𝜑𝐹:𝐸⟶ℝ)
54ffvelrnda 6837 . . . . . 6 ((𝜑𝑦𝐸) → (𝐹𝑦) ∈ ℝ)
65renegcld 11053 . . . . 5 ((𝜑𝑦𝐸) → -(𝐹𝑦) ∈ ℝ)
76fmpttd 6865 . . . 4 (𝜑 → (𝑦𝐸 ↦ -(𝐹𝑦)):𝐸⟶ℝ)
8 reelprrecn 10615 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
98a1i 11 . . . . . 6 (𝜑 → ℝ ∈ {ℝ, ℂ})
10 ax-resscn 10580 . . . . . . 7 ℝ ⊆ ℂ
1110, 5sseldi 3953 . . . . . 6 ((𝜑𝑦𝐸) → (𝐹𝑦) ∈ ℂ)
12 fvexd 6671 . . . . . 6 ((𝜑𝑦𝐸) → ((ℝ D 𝐹)‘𝑦) ∈ V)
134feqmptd 6719 . . . . . . . 8 (𝜑𝐹 = (𝑦𝐸 ↦ (𝐹𝑦)))
1413oveq2d 7158 . . . . . . 7 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑦𝐸 ↦ (𝐹𝑦))))
15 fdvposlt.c . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℝ))
16 cncff 23484 . . . . . . . . 9 ((ℝ D 𝐹) ∈ (𝐸cn→ℝ) → (ℝ D 𝐹):𝐸⟶ℝ)
1715, 16syl 17 . . . . . . . 8 (𝜑 → (ℝ D 𝐹):𝐸⟶ℝ)
1817feqmptd 6719 . . . . . . 7 (𝜑 → (ℝ D 𝐹) = (𝑦𝐸 ↦ ((ℝ D 𝐹)‘𝑦)))
1914, 18eqtr3d 2858 . . . . . 6 (𝜑 → (ℝ D (𝑦𝐸 ↦ (𝐹𝑦))) = (𝑦𝐸 ↦ ((ℝ D 𝐹)‘𝑦)))
209, 11, 12, 19dvmptneg 24548 . . . . 5 (𝜑 → (ℝ D (𝑦𝐸 ↦ -(𝐹𝑦))) = (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)))
2117ffvelrnda 6837 . . . . . . . 8 ((𝜑𝑦𝐸) → ((ℝ D 𝐹)‘𝑦) ∈ ℝ)
2221renegcld 11053 . . . . . . 7 ((𝜑𝑦𝐸) → -((ℝ D 𝐹)‘𝑦) ∈ ℝ)
2322fmpttd 6865 . . . . . 6 (𝜑 → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)):𝐸⟶ℝ)
24 ssid 3977 . . . . . . . . . 10 ℂ ⊆ ℂ
25 cncfss 23490 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐸cn→ℝ) ⊆ (𝐸cn→ℂ))
2610, 24, 25mp2an 690 . . . . . . . . 9 (𝐸cn→ℝ) ⊆ (𝐸cn→ℂ)
2726, 15sseldi 3953 . . . . . . . 8 (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℂ))
28 eqid 2821 . . . . . . . . 9 (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) = (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦))
2928negfcncf 23510 . . . . . . . 8 ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℂ))
3027, 29syl 17 . . . . . . 7 (𝜑 → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℂ))
31 cncffvrn 23489 . . . . . . 7 ((ℝ ⊆ ℂ ∧ (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℂ)) → ((𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℝ) ↔ (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)):𝐸⟶ℝ))
3210, 30, 31sylancr 589 . . . . . 6 (𝜑 → ((𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℝ) ↔ (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)):𝐸⟶ℝ))
3323, 32mpbird 259 . . . . 5 (𝜑 → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℝ))
3420, 33eqeltrd 2913 . . . 4 (𝜑 → (ℝ D (𝑦𝐸 ↦ -(𝐹𝑦))) ∈ (𝐸cn→ℝ))
35 fdvneggt.lt . . . 4 (𝜑𝐴 < 𝐵)
36 fdvneggt.1 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) < 0)
3717adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (ℝ D 𝐹):𝐸⟶ℝ)
38 ioossicc 12809 . . . . . . . . . . 11 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
3938a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
401, 2, 3fct2relem 31875 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸)
4139, 40sstrd 3965 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐸)
4241sselda 3955 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥𝐸)
4337, 42ffvelrnd 6838 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
4443lt0neg1d 11195 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑥) < 0 ↔ 0 < -((ℝ D 𝐹)‘𝑥)))
4536, 44mpbid 234 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < -((ℝ D 𝐹)‘𝑥))
4620adantr 483 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (ℝ D (𝑦𝐸 ↦ -(𝐹𝑦))) = (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)))
4746fveq1d 6658 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑦𝐸 ↦ -(𝐹𝑦)))‘𝑥) = ((𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦))‘𝑥))
4828a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) = (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)))
49 simpr 487 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
5049fveq2d 6660 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑥) → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘𝑥))
5150negeqd 10866 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑥) → -((ℝ D 𝐹)‘𝑦) = -((ℝ D 𝐹)‘𝑥))
5243renegcld 11053 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -((ℝ D 𝐹)‘𝑥) ∈ ℝ)
5348, 51, 42, 52fvmptd 6761 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦))‘𝑥) = -((ℝ D 𝐹)‘𝑥))
5447, 53eqtrd 2856 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑦𝐸 ↦ -(𝐹𝑦)))‘𝑥) = -((ℝ D 𝐹)‘𝑥))
5545, 54breqtrrd 5080 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < ((ℝ D (𝑦𝐸 ↦ -(𝐹𝑦)))‘𝑥))
561, 2, 3, 7, 34, 35, 55fdvposlt 31877 . . 3 (𝜑 → ((𝑦𝐸 ↦ -(𝐹𝑦))‘𝐴) < ((𝑦𝐸 ↦ -(𝐹𝑦))‘𝐵))
57 eqidd 2822 . . . 4 (𝜑 → (𝑦𝐸 ↦ -(𝐹𝑦)) = (𝑦𝐸 ↦ -(𝐹𝑦)))
58 simpr 487 . . . . . 6 ((𝜑𝑦 = 𝐴) → 𝑦 = 𝐴)
5958fveq2d 6660 . . . . 5 ((𝜑𝑦 = 𝐴) → (𝐹𝑦) = (𝐹𝐴))
6059negeqd 10866 . . . 4 ((𝜑𝑦 = 𝐴) → -(𝐹𝑦) = -(𝐹𝐴))
614, 2ffvelrnd 6838 . . . . 5 (𝜑 → (𝐹𝐴) ∈ ℝ)
6261renegcld 11053 . . . 4 (𝜑 → -(𝐹𝐴) ∈ ℝ)
6357, 60, 2, 62fvmptd 6761 . . 3 (𝜑 → ((𝑦𝐸 ↦ -(𝐹𝑦))‘𝐴) = -(𝐹𝐴))
64 simpr 487 . . . . . 6 ((𝜑𝑦 = 𝐵) → 𝑦 = 𝐵)
6564fveq2d 6660 . . . . 5 ((𝜑𝑦 = 𝐵) → (𝐹𝑦) = (𝐹𝐵))
6665negeqd 10866 . . . 4 ((𝜑𝑦 = 𝐵) → -(𝐹𝑦) = -(𝐹𝐵))
674, 3ffvelrnd 6838 . . . . 5 (𝜑 → (𝐹𝐵) ∈ ℝ)
6867renegcld 11053 . . . 4 (𝜑 → -(𝐹𝐵) ∈ ℝ)
6957, 66, 3, 68fvmptd 6761 . . 3 (𝜑 → ((𝑦𝐸 ↦ -(𝐹𝑦))‘𝐵) = -(𝐹𝐵))
7056, 63, 693brtr3d 5083 . 2 (𝜑 → -(𝐹𝐴) < -(𝐹𝐵))
7167, 61ltnegd 11204 . 2 (𝜑 → ((𝐹𝐵) < (𝐹𝐴) ↔ -(𝐹𝐴) < -(𝐹𝐵)))
7270, 71mpbird 259 1 (𝜑 → (𝐹𝐵) < (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3486  wss 3924  {cpr 4555   class class class wbr 5052  cmpt 5132  wf 6337  cfv 6341  (class class class)co 7142  cc 10521  cr 10522  0cc0 10523   < clt 10661  -cneg 10857  (,)cioo 12725  [,]cicc 12728  cnccncf 23467   D cdv 24446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-inf2 9090  ax-cc 9843  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600  ax-pre-sup 10601  ax-addf 10602  ax-mulf 10603
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-symdif 4207  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-disj 5018  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-se 5501  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-of 7395  df-ofr 7396  df-om 7567  df-1st 7675  df-2nd 7676  df-supp 7817  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-2o 8089  df-oadd 8092  df-omul 8093  df-er 8275  df-map 8394  df-pm 8395  df-ixp 8448  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fsupp 8820  df-fi 8861  df-sup 8892  df-inf 8893  df-oi 8960  df-dju 9316  df-card 9354  df-acn 9357  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-div 11284  df-nn 11625  df-2 11687  df-3 11688  df-4 11689  df-5 11690  df-6 11691  df-7 11692  df-8 11693  df-9 11694  df-n0 11885  df-z 11969  df-dec 12086  df-uz 12231  df-q 12336  df-rp 12377  df-xneg 12494  df-xadd 12495  df-xmul 12496  df-ioo 12729  df-ioc 12730  df-ico 12731  df-icc 12732  df-fz 12883  df-fzo 13024  df-fl 13152  df-mod 13228  df-seq 13360  df-exp 13420  df-hash 13681  df-cj 14443  df-re 14444  df-im 14445  df-sqrt 14579  df-abs 14580  df-limsup 14813  df-clim 14830  df-rlim 14831  df-sum 15028  df-struct 16468  df-ndx 16469  df-slot 16470  df-base 16472  df-sets 16473  df-ress 16474  df-plusg 16561  df-mulr 16562  df-starv 16563  df-sca 16564  df-vsca 16565  df-ip 16566  df-tset 16567  df-ple 16568  df-ds 16570  df-unif 16571  df-hom 16572  df-cco 16573  df-rest 16679  df-topn 16680  df-0g 16698  df-gsum 16699  df-topgen 16700  df-pt 16701  df-prds 16704  df-xrs 16758  df-qtop 16763  df-imas 16764  df-xps 16766  df-mre 16840  df-mrc 16841  df-acs 16843  df-mgm 17835  df-sgrp 17884  df-mnd 17895  df-submnd 17940  df-mulg 18208  df-cntz 18430  df-cmn 18891  df-psmet 20520  df-xmet 20521  df-met 20522  df-bl 20523  df-mopn 20524  df-fbas 20525  df-fg 20526  df-cnfld 20529  df-top 21485  df-topon 21502  df-topsp 21524  df-bases 21537  df-cld 21610  df-ntr 21611  df-cls 21612  df-nei 21689  df-lp 21727  df-perf 21728  df-cn 21818  df-cnp 21819  df-haus 21906  df-cmp 21978  df-tx 22153  df-hmeo 22346  df-fil 22437  df-fm 22529  df-flim 22530  df-flf 22531  df-xms 22913  df-ms 22914  df-tms 22915  df-cncf 23469  df-ovol 24048  df-vol 24049  df-mbf 24203  df-itg1 24204  df-itg2 24205  df-ibl 24206  df-itg 24207  df-0p 24254  df-limc 24449  df-dv 24450
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator