| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fdvposlt.d | . . . 4
⊢ 𝐸 = (𝐶(,)𝐷) | 
| 2 |  | fdvposlt.a | . . . 4
⊢ (𝜑 → 𝐴 ∈ 𝐸) | 
| 3 |  | fdvposlt.b | . . . 4
⊢ (𝜑 → 𝐵 ∈ 𝐸) | 
| 4 |  | fdvposlt.f | . . . . . . 7
⊢ (𝜑 → 𝐹:𝐸⟶ℝ) | 
| 5 | 4 | ffvelcdmda 7104 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐸) → (𝐹‘𝑦) ∈ ℝ) | 
| 6 | 5 | renegcld 11690 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐸) → -(𝐹‘𝑦) ∈ ℝ) | 
| 7 | 6 | fmpttd 7135 | . . . 4
⊢ (𝜑 → (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦)):𝐸⟶ℝ) | 
| 8 |  | reelprrecn 11247 | . . . . . . 7
⊢ ℝ
∈ {ℝ, ℂ} | 
| 9 | 8 | a1i 11 | . . . . . 6
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) | 
| 10 |  | ax-resscn 11212 | . . . . . . 7
⊢ ℝ
⊆ ℂ | 
| 11 | 10, 5 | sselid 3981 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐸) → (𝐹‘𝑦) ∈ ℂ) | 
| 12 |  | fvexd 6921 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐸) → ((ℝ D 𝐹)‘𝑦) ∈ V) | 
| 13 | 4 | feqmptd 6977 | . . . . . . . 8
⊢ (𝜑 → 𝐹 = (𝑦 ∈ 𝐸 ↦ (𝐹‘𝑦))) | 
| 14 | 13 | oveq2d 7447 | . . . . . . 7
⊢ (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑦 ∈ 𝐸 ↦ (𝐹‘𝑦)))) | 
| 15 |  | fdvposlt.c | . . . . . . . . 9
⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℝ)) | 
| 16 |  | cncff 24919 | . . . . . . . . 9
⊢ ((ℝ
D 𝐹) ∈ (𝐸–cn→ℝ) → (ℝ D 𝐹):𝐸⟶ℝ) | 
| 17 | 15, 16 | syl 17 | . . . . . . . 8
⊢ (𝜑 → (ℝ D 𝐹):𝐸⟶ℝ) | 
| 18 | 17 | feqmptd 6977 | . . . . . . 7
⊢ (𝜑 → (ℝ D 𝐹) = (𝑦 ∈ 𝐸 ↦ ((ℝ D 𝐹)‘𝑦))) | 
| 19 | 14, 18 | eqtr3d 2779 | . . . . . 6
⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐸 ↦ (𝐹‘𝑦))) = (𝑦 ∈ 𝐸 ↦ ((ℝ D 𝐹)‘𝑦))) | 
| 20 | 9, 11, 12, 19 | dvmptneg 26004 | . . . . 5
⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦))) = (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦))) | 
| 21 | 17 | ffvelcdmda 7104 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐸) → ((ℝ D 𝐹)‘𝑦) ∈ ℝ) | 
| 22 | 21 | renegcld 11690 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐸) → -((ℝ D 𝐹)‘𝑦) ∈ ℝ) | 
| 23 | 22 | fmpttd 7135 | . . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)):𝐸⟶ℝ) | 
| 24 |  | ssid 4006 | . . . . . . . . . 10
⊢ ℂ
⊆ ℂ | 
| 25 |  | cncfss 24925 | . . . . . . . . . 10
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐸–cn→ℝ) ⊆ (𝐸–cn→ℂ)) | 
| 26 | 10, 24, 25 | mp2an 692 | . . . . . . . . 9
⊢ (𝐸–cn→ℝ) ⊆ (𝐸–cn→ℂ) | 
| 27 | 26, 15 | sselid 3981 | . . . . . . . 8
⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℂ)) | 
| 28 |  | eqid 2737 | . . . . . . . . 9
⊢ (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) = (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) | 
| 29 | 28 | negfcncf 24950 | . . . . . . . 8
⊢ ((ℝ
D 𝐹) ∈ (𝐸–cn→ℂ) → (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸–cn→ℂ)) | 
| 30 | 27, 29 | syl 17 | . . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸–cn→ℂ)) | 
| 31 |  | cncfcdm 24924 | . . . . . . 7
⊢ ((ℝ
⊆ ℂ ∧ (𝑦
∈ 𝐸 ↦ -((ℝ
D 𝐹)‘𝑦)) ∈ (𝐸–cn→ℂ)) → ((𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸–cn→ℝ) ↔ (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)):𝐸⟶ℝ)) | 
| 32 | 10, 30, 31 | sylancr 587 | . . . . . 6
⊢ (𝜑 → ((𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸–cn→ℝ) ↔ (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)):𝐸⟶ℝ)) | 
| 33 | 23, 32 | mpbird 257 | . . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸–cn→ℝ)) | 
| 34 | 20, 33 | eqeltrd 2841 | . . . 4
⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦))) ∈ (𝐸–cn→ℝ)) | 
| 35 |  | fdvneggt.lt | . . . 4
⊢ (𝜑 → 𝐴 < 𝐵) | 
| 36 |  | fdvneggt.1 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) < 0) | 
| 37 | 17 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (ℝ D 𝐹):𝐸⟶ℝ) | 
| 38 |  | ioossicc 13473 | . . . . . . . . . . 11
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | 
| 39 | 38 | a1i 11 | . . . . . . . . . 10
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) | 
| 40 | 1, 2, 3 | fct2relem 34612 | . . . . . . . . . 10
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸) | 
| 41 | 39, 40 | sstrd 3994 | . . . . . . . . 9
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐸) | 
| 42 | 41 | sselda 3983 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ 𝐸) | 
| 43 | 37, 42 | ffvelcdmd 7105 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ) | 
| 44 | 43 | lt0neg1d 11832 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑥) < 0 ↔ 0 < -((ℝ D 𝐹)‘𝑥))) | 
| 45 | 36, 44 | mpbid 232 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 < -((ℝ D 𝐹)‘𝑥)) | 
| 46 | 20 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (ℝ D (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦))) = (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦))) | 
| 47 | 46 | fveq1d 6908 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦)))‘𝑥) = ((𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦))‘𝑥)) | 
| 48 | 28 | a1i 11 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) = (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦))) | 
| 49 |  | simpr 484 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥) | 
| 50 | 49 | fveq2d 6910 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑥) → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘𝑥)) | 
| 51 | 50 | negeqd 11502 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑥) → -((ℝ D 𝐹)‘𝑦) = -((ℝ D 𝐹)‘𝑥)) | 
| 52 | 43 | renegcld 11690 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → -((ℝ D 𝐹)‘𝑥) ∈ ℝ) | 
| 53 | 48, 51, 42, 52 | fvmptd 7023 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦))‘𝑥) = -((ℝ D 𝐹)‘𝑥)) | 
| 54 | 47, 53 | eqtrd 2777 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦)))‘𝑥) = -((ℝ D 𝐹)‘𝑥)) | 
| 55 | 45, 54 | breqtrrd 5171 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 < ((ℝ D (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦)))‘𝑥)) | 
| 56 | 1, 2, 3, 7, 34, 35, 55 | fdvposlt 34614 | . . 3
⊢ (𝜑 → ((𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦))‘𝐴) < ((𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦))‘𝐵)) | 
| 57 |  | eqidd 2738 | . . . 4
⊢ (𝜑 → (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦)) = (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦))) | 
| 58 |  | simpr 484 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴) | 
| 59 | 58 | fveq2d 6910 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 = 𝐴) → (𝐹‘𝑦) = (𝐹‘𝐴)) | 
| 60 | 59 | negeqd 11502 | . . . 4
⊢ ((𝜑 ∧ 𝑦 = 𝐴) → -(𝐹‘𝑦) = -(𝐹‘𝐴)) | 
| 61 | 4, 2 | ffvelcdmd 7105 | . . . . 5
⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) | 
| 62 | 61 | renegcld 11690 | . . . 4
⊢ (𝜑 → -(𝐹‘𝐴) ∈ ℝ) | 
| 63 | 57, 60, 2, 62 | fvmptd 7023 | . . 3
⊢ (𝜑 → ((𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦))‘𝐴) = -(𝐹‘𝐴)) | 
| 64 |  | simpr 484 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) | 
| 65 | 64 | fveq2d 6910 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 = 𝐵) → (𝐹‘𝑦) = (𝐹‘𝐵)) | 
| 66 | 65 | negeqd 11502 | . . . 4
⊢ ((𝜑 ∧ 𝑦 = 𝐵) → -(𝐹‘𝑦) = -(𝐹‘𝐵)) | 
| 67 | 4, 3 | ffvelcdmd 7105 | . . . . 5
⊢ (𝜑 → (𝐹‘𝐵) ∈ ℝ) | 
| 68 | 67 | renegcld 11690 | . . . 4
⊢ (𝜑 → -(𝐹‘𝐵) ∈ ℝ) | 
| 69 | 57, 66, 3, 68 | fvmptd 7023 | . . 3
⊢ (𝜑 → ((𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦))‘𝐵) = -(𝐹‘𝐵)) | 
| 70 | 56, 63, 69 | 3brtr3d 5174 | . 2
⊢ (𝜑 → -(𝐹‘𝐴) < -(𝐹‘𝐵)) | 
| 71 | 67, 61 | ltnegd 11841 | . 2
⊢ (𝜑 → ((𝐹‘𝐵) < (𝐹‘𝐴) ↔ -(𝐹‘𝐴) < -(𝐹‘𝐵))) | 
| 72 | 70, 71 | mpbird 257 | 1
⊢ (𝜑 → (𝐹‘𝐵) < (𝐹‘𝐴)) |