Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fdvposlt | Structured version Visualization version GIF version |
Description: Functions with a positive derivative, i.e. monotonously growing functions, preserve strict ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
Ref | Expression |
---|---|
fdvposlt.d | ⊢ 𝐸 = (𝐶(,)𝐷) |
fdvposlt.a | ⊢ (𝜑 → 𝐴 ∈ 𝐸) |
fdvposlt.b | ⊢ (𝜑 → 𝐵 ∈ 𝐸) |
fdvposlt.f | ⊢ (𝜑 → 𝐹:𝐸⟶ℝ) |
fdvposlt.c | ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℝ)) |
fdvposlt.lt | ⊢ (𝜑 → 𝐴 < 𝐵) |
fdvposlt.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 < ((ℝ D 𝐹)‘𝑥)) |
Ref | Expression |
---|---|
fdvposlt | ⊢ (𝜑 → (𝐹‘𝐴) < (𝐹‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdvposlt.lt | . . . . . 6 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | fdvposlt.d | . . . . . . . . 9 ⊢ 𝐸 = (𝐶(,)𝐷) | |
3 | ioossre 13140 | . . . . . . . . 9 ⊢ (𝐶(,)𝐷) ⊆ ℝ | |
4 | 2, 3 | eqsstri 3955 | . . . . . . . 8 ⊢ 𝐸 ⊆ ℝ |
5 | fdvposlt.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝐸) | |
6 | 4, 5 | sselid 3919 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
7 | fdvposlt.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ 𝐸) | |
8 | 4, 7 | sselid 3919 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
9 | 6, 8 | posdifd 11562 | . . . . . 6 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
10 | 1, 9 | mpbid 231 | . . . . 5 ⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
11 | 6, 8, 1 | ltled 11123 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
12 | volioo 24733 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) | |
13 | 6, 8, 11, 12 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |
14 | 10, 13 | breqtrrd 5102 | . . . 4 ⊢ (𝜑 → 0 < (vol‘(𝐴(,)𝐵))) |
15 | ioossicc 13165 | . . . . . 6 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
16 | 15 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
17 | ioombl 24729 | . . . . . 6 ⊢ (𝐴(,)𝐵) ∈ dom vol | |
18 | 17 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐴(,)𝐵) ∈ dom vol) |
19 | fdvposlt.c | . . . . . . . 8 ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℝ)) | |
20 | cncff 24056 | . . . . . . . 8 ⊢ ((ℝ D 𝐹) ∈ (𝐸–cn→ℝ) → (ℝ D 𝐹):𝐸⟶ℝ) | |
21 | 19, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (ℝ D 𝐹):𝐸⟶ℝ) |
22 | 21 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (ℝ D 𝐹):𝐸⟶ℝ) |
23 | 2, 5, 7 | fct2relem 32577 | . . . . . . 7 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸) |
24 | 23 | sselda 3921 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ 𝐸) |
25 | 22, 24 | ffvelrnd 6962 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ) |
26 | ax-resscn 10928 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
27 | ssid 3943 | . . . . . . . 8 ⊢ ℂ ⊆ ℂ | |
28 | cncfss 24062 | . . . . . . . 8 ⊢ ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ)) | |
29 | 26, 27, 28 | mp2an 689 | . . . . . . 7 ⊢ ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ) |
30 | 21, 23 | feqresmpt 6838 | . . . . . . . 8 ⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥))) |
31 | rescncf 24060 | . . . . . . . . 9 ⊢ ((𝐴[,]𝐵) ⊆ 𝐸 → ((ℝ D 𝐹) ∈ (𝐸–cn→ℝ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))) | |
32 | 23, 19, 31 | sylc 65 | . . . . . . . 8 ⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
33 | 30, 32 | eqeltrrd 2840 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
34 | 29, 33 | sselid 3919 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
35 | cniccibl 25005 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ 𝐿1) | |
36 | 6, 8, 34, 35 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ 𝐿1) |
37 | 16, 18, 25, 36 | iblss 24969 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ 𝐿1) |
38 | 21 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (ℝ D 𝐹):𝐸⟶ℝ) |
39 | 16 | sselda 3921 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵)) |
40 | 39, 24 | syldan 591 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ 𝐸) |
41 | 38, 40 | ffvelrnd 6962 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ) |
42 | fdvposlt.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 < ((ℝ D 𝐹)‘𝑥)) | |
43 | elrp 12732 | . . . . 5 ⊢ (((ℝ D 𝐹)‘𝑥) ∈ ℝ+ ↔ (((ℝ D 𝐹)‘𝑥) ∈ ℝ ∧ 0 < ((ℝ D 𝐹)‘𝑥))) | |
44 | 41, 42, 43 | sylanbrc 583 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ+) |
45 | 14, 37, 44 | itggt0 25008 | . . 3 ⊢ (𝜑 → 0 < ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) d𝑥) |
46 | fdvposlt.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐸⟶ℝ) | |
47 | fss 6617 | . . . . 5 ⊢ ((𝐹:𝐸⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐸⟶ℂ) | |
48 | 46, 26, 47 | sylancl 586 | . . . 4 ⊢ (𝜑 → 𝐹:𝐸⟶ℂ) |
49 | cncfss 24062 | . . . . . 6 ⊢ ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐸–cn→ℝ) ⊆ (𝐸–cn→ℂ)) | |
50 | 26, 27, 49 | mp2an 689 | . . . . 5 ⊢ (𝐸–cn→ℝ) ⊆ (𝐸–cn→ℂ) |
51 | 50, 19 | sselid 3919 | . . . 4 ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℂ)) |
52 | 2, 5, 7, 11, 48, 51 | ftc2re 32578 | . . 3 ⊢ (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) d𝑥 = ((𝐹‘𝐵) − (𝐹‘𝐴))) |
53 | 45, 52 | breqtrd 5100 | . 2 ⊢ (𝜑 → 0 < ((𝐹‘𝐵) − (𝐹‘𝐴))) |
54 | 46, 5 | ffvelrnd 6962 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
55 | 46, 7 | ffvelrnd 6962 | . . 3 ⊢ (𝜑 → (𝐹‘𝐵) ∈ ℝ) |
56 | 54, 55 | posdifd 11562 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) < (𝐹‘𝐵) ↔ 0 < ((𝐹‘𝐵) − (𝐹‘𝐴)))) |
57 | 53, 56 | mpbird 256 | 1 ⊢ (𝜑 → (𝐹‘𝐴) < (𝐹‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 class class class wbr 5074 ↦ cmpt 5157 dom cdm 5589 ↾ cres 5591 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝcr 10870 0cc0 10871 < clt 11009 ≤ cle 11010 − cmin 11205 ℝ+crp 12730 (,)cioo 13079 [,]cicc 13082 –cn→ccncf 24039 volcvol 24627 𝐿1cibl 24781 ∫citg 24782 D cdv 25027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cc 10191 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-symdif 4176 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-disj 5040 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-ofr 7534 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-omul 8302 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-acn 9700 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ioc 13084 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-rlim 15198 df-sum 15398 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-fbas 20594 df-fg 20595 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-lp 22287 df-perf 22288 df-cn 22378 df-cnp 22379 df-haus 22466 df-cmp 22538 df-tx 22713 df-hmeo 22906 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-xms 23473 df-ms 23474 df-tms 23475 df-cncf 24041 df-ovol 24628 df-vol 24629 df-mbf 24783 df-itg1 24784 df-itg2 24785 df-ibl 24786 df-itg 24787 df-0p 24834 df-limc 25030 df-dv 25031 |
This theorem is referenced by: fdvneggt 32580 |
Copyright terms: Public domain | W3C validator |