| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fdvposlt | Structured version Visualization version GIF version | ||
| Description: Functions with a positive derivative, i.e. monotonously growing functions, preserve strict ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
| Ref | Expression |
|---|---|
| fdvposlt.d | ⊢ 𝐸 = (𝐶(,)𝐷) |
| fdvposlt.a | ⊢ (𝜑 → 𝐴 ∈ 𝐸) |
| fdvposlt.b | ⊢ (𝜑 → 𝐵 ∈ 𝐸) |
| fdvposlt.f | ⊢ (𝜑 → 𝐹:𝐸⟶ℝ) |
| fdvposlt.c | ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℝ)) |
| fdvposlt.lt | ⊢ (𝜑 → 𝐴 < 𝐵) |
| fdvposlt.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 < ((ℝ D 𝐹)‘𝑥)) |
| Ref | Expression |
|---|---|
| fdvposlt | ⊢ (𝜑 → (𝐹‘𝐴) < (𝐹‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdvposlt.lt | . . . . . 6 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | fdvposlt.d | . . . . . . . . 9 ⊢ 𝐸 = (𝐶(,)𝐷) | |
| 3 | ioossre 13302 | . . . . . . . . 9 ⊢ (𝐶(,)𝐷) ⊆ ℝ | |
| 4 | 2, 3 | eqsstri 3976 | . . . . . . . 8 ⊢ 𝐸 ⊆ ℝ |
| 5 | fdvposlt.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝐸) | |
| 6 | 4, 5 | sselid 3927 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 7 | fdvposlt.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ 𝐸) | |
| 8 | 4, 7 | sselid 3927 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 9 | 6, 8 | posdifd 11699 | . . . . . 6 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
| 10 | 1, 9 | mpbid 232 | . . . . 5 ⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
| 11 | 6, 8, 1 | ltled 11256 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 12 | volioo 25492 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) | |
| 13 | 6, 8, 11, 12 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |
| 14 | 10, 13 | breqtrrd 5114 | . . . 4 ⊢ (𝜑 → 0 < (vol‘(𝐴(,)𝐵))) |
| 15 | ioossicc 13328 | . . . . . 6 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
| 16 | 15 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
| 17 | ioombl 25488 | . . . . . 6 ⊢ (𝐴(,)𝐵) ∈ dom vol | |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐴(,)𝐵) ∈ dom vol) |
| 19 | fdvposlt.c | . . . . . . . 8 ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℝ)) | |
| 20 | cncff 24808 | . . . . . . . 8 ⊢ ((ℝ D 𝐹) ∈ (𝐸–cn→ℝ) → (ℝ D 𝐹):𝐸⟶ℝ) | |
| 21 | 19, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (ℝ D 𝐹):𝐸⟶ℝ) |
| 22 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (ℝ D 𝐹):𝐸⟶ℝ) |
| 23 | 2, 5, 7 | fct2relem 34602 | . . . . . . 7 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸) |
| 24 | 23 | sselda 3929 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ 𝐸) |
| 25 | 22, 24 | ffvelcdmd 7013 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ) |
| 26 | ax-resscn 11058 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
| 27 | ssid 3952 | . . . . . . . 8 ⊢ ℂ ⊆ ℂ | |
| 28 | cncfss 24814 | . . . . . . . 8 ⊢ ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ)) | |
| 29 | 26, 27, 28 | mp2an 692 | . . . . . . 7 ⊢ ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ) |
| 30 | 21, 23 | feqresmpt 6886 | . . . . . . . 8 ⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥))) |
| 31 | rescncf 24812 | . . . . . . . . 9 ⊢ ((𝐴[,]𝐵) ⊆ 𝐸 → ((ℝ D 𝐹) ∈ (𝐸–cn→ℝ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))) | |
| 32 | 23, 19, 31 | sylc 65 | . . . . . . . 8 ⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| 33 | 30, 32 | eqeltrrd 2832 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| 34 | 29, 33 | sselid 3927 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 35 | cniccibl 25764 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ 𝐿1) | |
| 36 | 6, 8, 34, 35 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ 𝐿1) |
| 37 | 16, 18, 25, 36 | iblss 25728 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ 𝐿1) |
| 38 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (ℝ D 𝐹):𝐸⟶ℝ) |
| 39 | 16 | sselda 3929 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 40 | 39, 24 | syldan 591 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ 𝐸) |
| 41 | 38, 40 | ffvelcdmd 7013 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ) |
| 42 | fdvposlt.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 < ((ℝ D 𝐹)‘𝑥)) | |
| 43 | elrp 12887 | . . . . 5 ⊢ (((ℝ D 𝐹)‘𝑥) ∈ ℝ+ ↔ (((ℝ D 𝐹)‘𝑥) ∈ ℝ ∧ 0 < ((ℝ D 𝐹)‘𝑥))) | |
| 44 | 41, 42, 43 | sylanbrc 583 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ+) |
| 45 | 14, 37, 44 | itggt0 25767 | . . 3 ⊢ (𝜑 → 0 < ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) d𝑥) |
| 46 | fdvposlt.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐸⟶ℝ) | |
| 47 | fss 6662 | . . . . 5 ⊢ ((𝐹:𝐸⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐸⟶ℂ) | |
| 48 | 46, 26, 47 | sylancl 586 | . . . 4 ⊢ (𝜑 → 𝐹:𝐸⟶ℂ) |
| 49 | cncfss 24814 | . . . . . 6 ⊢ ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐸–cn→ℝ) ⊆ (𝐸–cn→ℂ)) | |
| 50 | 26, 27, 49 | mp2an 692 | . . . . 5 ⊢ (𝐸–cn→ℝ) ⊆ (𝐸–cn→ℂ) |
| 51 | 50, 19 | sselid 3927 | . . . 4 ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℂ)) |
| 52 | 2, 5, 7, 11, 48, 51 | ftc2re 34603 | . . 3 ⊢ (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) d𝑥 = ((𝐹‘𝐵) − (𝐹‘𝐴))) |
| 53 | 45, 52 | breqtrd 5112 | . 2 ⊢ (𝜑 → 0 < ((𝐹‘𝐵) − (𝐹‘𝐴))) |
| 54 | 46, 5 | ffvelcdmd 7013 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
| 55 | 46, 7 | ffvelcdmd 7013 | . . 3 ⊢ (𝜑 → (𝐹‘𝐵) ∈ ℝ) |
| 56 | 54, 55 | posdifd 11699 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) < (𝐹‘𝐵) ↔ 0 < ((𝐹‘𝐵) − (𝐹‘𝐴)))) |
| 57 | 53, 56 | mpbird 257 | 1 ⊢ (𝜑 → (𝐹‘𝐴) < (𝐹‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 class class class wbr 5086 ↦ cmpt 5167 dom cdm 5611 ↾ cres 5613 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 ℝcr 11000 0cc0 11001 < clt 11141 ≤ cle 11142 − cmin 11339 ℝ+crp 12885 (,)cioo 13240 [,]cicc 13243 –cn→ccncf 24791 volcvol 25386 𝐿1cibl 25540 ∫citg 25541 D cdv 25786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cc 10321 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-symdif 4198 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-disj 5054 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-omul 8385 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-dju 9789 df-card 9827 df-acn 9830 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-ioo 13244 df-ioc 13245 df-ico 13246 df-icc 13247 df-fz 13403 df-fzo 13550 df-fl 13691 df-mod 13769 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-limsup 15373 df-clim 15390 df-rlim 15391 df-sum 15589 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-rest 17321 df-topn 17322 df-0g 17340 df-gsum 17341 df-topgen 17342 df-pt 17343 df-prds 17346 df-xrs 17401 df-qtop 17406 df-imas 17407 df-xps 17409 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19224 df-cmn 19689 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-fbas 21283 df-fg 21284 df-cnfld 21287 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-cld 22929 df-ntr 22930 df-cls 22931 df-nei 23008 df-lp 23046 df-perf 23047 df-cn 23137 df-cnp 23138 df-haus 23225 df-cmp 23297 df-tx 23472 df-hmeo 23665 df-fil 23756 df-fm 23848 df-flim 23849 df-flf 23850 df-xms 24230 df-ms 24231 df-tms 24232 df-cncf 24793 df-ovol 25387 df-vol 25388 df-mbf 25542 df-itg1 25543 df-itg2 25544 df-ibl 25545 df-itg 25546 df-0p 25593 df-limc 25789 df-dv 25790 |
| This theorem is referenced by: fdvneggt 34605 |
| Copyright terms: Public domain | W3C validator |