| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fdvposlt | Structured version Visualization version GIF version | ||
| Description: Functions with a positive derivative, i.e. monotonously growing functions, preserve strict ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
| Ref | Expression |
|---|---|
| fdvposlt.d | ⊢ 𝐸 = (𝐶(,)𝐷) |
| fdvposlt.a | ⊢ (𝜑 → 𝐴 ∈ 𝐸) |
| fdvposlt.b | ⊢ (𝜑 → 𝐵 ∈ 𝐸) |
| fdvposlt.f | ⊢ (𝜑 → 𝐹:𝐸⟶ℝ) |
| fdvposlt.c | ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℝ)) |
| fdvposlt.lt | ⊢ (𝜑 → 𝐴 < 𝐵) |
| fdvposlt.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 < ((ℝ D 𝐹)‘𝑥)) |
| Ref | Expression |
|---|---|
| fdvposlt | ⊢ (𝜑 → (𝐹‘𝐴) < (𝐹‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdvposlt.lt | . . . . . 6 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | fdvposlt.d | . . . . . . . . 9 ⊢ 𝐸 = (𝐶(,)𝐷) | |
| 3 | ioossre 13344 | . . . . . . . . 9 ⊢ (𝐶(,)𝐷) ⊆ ℝ | |
| 4 | 2, 3 | eqsstri 3990 | . . . . . . . 8 ⊢ 𝐸 ⊆ ℝ |
| 5 | fdvposlt.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝐸) | |
| 6 | 4, 5 | sselid 3941 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 7 | fdvposlt.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ 𝐸) | |
| 8 | 4, 7 | sselid 3941 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 9 | 6, 8 | posdifd 11741 | . . . . . 6 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
| 10 | 1, 9 | mpbid 232 | . . . . 5 ⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
| 11 | 6, 8, 1 | ltled 11298 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 12 | volioo 25446 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) | |
| 13 | 6, 8, 11, 12 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |
| 14 | 10, 13 | breqtrrd 5130 | . . . 4 ⊢ (𝜑 → 0 < (vol‘(𝐴(,)𝐵))) |
| 15 | ioossicc 13370 | . . . . . 6 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
| 16 | 15 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
| 17 | ioombl 25442 | . . . . . 6 ⊢ (𝐴(,)𝐵) ∈ dom vol | |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐴(,)𝐵) ∈ dom vol) |
| 19 | fdvposlt.c | . . . . . . . 8 ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℝ)) | |
| 20 | cncff 24762 | . . . . . . . 8 ⊢ ((ℝ D 𝐹) ∈ (𝐸–cn→ℝ) → (ℝ D 𝐹):𝐸⟶ℝ) | |
| 21 | 19, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (ℝ D 𝐹):𝐸⟶ℝ) |
| 22 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (ℝ D 𝐹):𝐸⟶ℝ) |
| 23 | 2, 5, 7 | fct2relem 34561 | . . . . . . 7 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸) |
| 24 | 23 | sselda 3943 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ 𝐸) |
| 25 | 22, 24 | ffvelcdmd 7039 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ) |
| 26 | ax-resscn 11101 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
| 27 | ssid 3966 | . . . . . . . 8 ⊢ ℂ ⊆ ℂ | |
| 28 | cncfss 24768 | . . . . . . . 8 ⊢ ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ)) | |
| 29 | 26, 27, 28 | mp2an 692 | . . . . . . 7 ⊢ ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ) |
| 30 | 21, 23 | feqresmpt 6912 | . . . . . . . 8 ⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥))) |
| 31 | rescncf 24766 | . . . . . . . . 9 ⊢ ((𝐴[,]𝐵) ⊆ 𝐸 → ((ℝ D 𝐹) ∈ (𝐸–cn→ℝ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))) | |
| 32 | 23, 19, 31 | sylc 65 | . . . . . . . 8 ⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| 33 | 30, 32 | eqeltrrd 2829 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| 34 | 29, 33 | sselid 3941 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 35 | cniccibl 25718 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ 𝐿1) | |
| 36 | 6, 8, 34, 35 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ 𝐿1) |
| 37 | 16, 18, 25, 36 | iblss 25682 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ 𝐿1) |
| 38 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (ℝ D 𝐹):𝐸⟶ℝ) |
| 39 | 16 | sselda 3943 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 40 | 39, 24 | syldan 591 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ 𝐸) |
| 41 | 38, 40 | ffvelcdmd 7039 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ) |
| 42 | fdvposlt.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 < ((ℝ D 𝐹)‘𝑥)) | |
| 43 | elrp 12929 | . . . . 5 ⊢ (((ℝ D 𝐹)‘𝑥) ∈ ℝ+ ↔ (((ℝ D 𝐹)‘𝑥) ∈ ℝ ∧ 0 < ((ℝ D 𝐹)‘𝑥))) | |
| 44 | 41, 42, 43 | sylanbrc 583 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ+) |
| 45 | 14, 37, 44 | itggt0 25721 | . . 3 ⊢ (𝜑 → 0 < ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) d𝑥) |
| 46 | fdvposlt.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐸⟶ℝ) | |
| 47 | fss 6686 | . . . . 5 ⊢ ((𝐹:𝐸⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐸⟶ℂ) | |
| 48 | 46, 26, 47 | sylancl 586 | . . . 4 ⊢ (𝜑 → 𝐹:𝐸⟶ℂ) |
| 49 | cncfss 24768 | . . . . . 6 ⊢ ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐸–cn→ℝ) ⊆ (𝐸–cn→ℂ)) | |
| 50 | 26, 27, 49 | mp2an 692 | . . . . 5 ⊢ (𝐸–cn→ℝ) ⊆ (𝐸–cn→ℂ) |
| 51 | 50, 19 | sselid 3941 | . . . 4 ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℂ)) |
| 52 | 2, 5, 7, 11, 48, 51 | ftc2re 34562 | . . 3 ⊢ (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) d𝑥 = ((𝐹‘𝐵) − (𝐹‘𝐴))) |
| 53 | 45, 52 | breqtrd 5128 | . 2 ⊢ (𝜑 → 0 < ((𝐹‘𝐵) − (𝐹‘𝐴))) |
| 54 | 46, 5 | ffvelcdmd 7039 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
| 55 | 46, 7 | ffvelcdmd 7039 | . . 3 ⊢ (𝜑 → (𝐹‘𝐵) ∈ ℝ) |
| 56 | 54, 55 | posdifd 11741 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) < (𝐹‘𝐵) ↔ 0 < ((𝐹‘𝐵) − (𝐹‘𝐴)))) |
| 57 | 53, 56 | mpbird 257 | 1 ⊢ (𝜑 → (𝐹‘𝐴) < (𝐹‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 class class class wbr 5102 ↦ cmpt 5183 dom cdm 5631 ↾ cres 5633 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℝcr 11043 0cc0 11044 < clt 11184 ≤ cle 11185 − cmin 11381 ℝ+crp 12927 (,)cioo 13282 [,]cicc 13285 –cn→ccncf 24745 volcvol 25340 𝐿1cibl 25494 ∫citg 25495 D cdv 25740 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cc 10364 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-symdif 4212 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-disj 5070 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-omul 8416 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-dju 9830 df-card 9868 df-acn 9871 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ioc 13287 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-limsup 15413 df-clim 15430 df-rlim 15431 df-sum 15629 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19225 df-cmn 19688 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-fbas 21237 df-fg 21238 df-cnfld 21241 df-top 22757 df-topon 22774 df-topsp 22796 df-bases 22809 df-cld 22882 df-ntr 22883 df-cls 22884 df-nei 22961 df-lp 22999 df-perf 23000 df-cn 23090 df-cnp 23091 df-haus 23178 df-cmp 23250 df-tx 23425 df-hmeo 23618 df-fil 23709 df-fm 23801 df-flim 23802 df-flf 23803 df-xms 24184 df-ms 24185 df-tms 24186 df-cncf 24747 df-ovol 25341 df-vol 25342 df-mbf 25496 df-itg1 25497 df-itg2 25498 df-ibl 25499 df-itg 25500 df-0p 25547 df-limc 25743 df-dv 25744 |
| This theorem is referenced by: fdvneggt 34564 |
| Copyright terms: Public domain | W3C validator |