Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fdvnegge | Structured version Visualization version GIF version |
Description: Functions with a nonpositive derivative, i.e., decreasing functions, preserve ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
Ref | Expression |
---|---|
fdvposlt.d | ⊢ 𝐸 = (𝐶(,)𝐷) |
fdvposlt.a | ⊢ (𝜑 → 𝐴 ∈ 𝐸) |
fdvposlt.b | ⊢ (𝜑 → 𝐵 ∈ 𝐸) |
fdvposlt.f | ⊢ (𝜑 → 𝐹:𝐸⟶ℝ) |
fdvposlt.c | ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℝ)) |
fdvnegge.le | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
fdvnegge.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ≤ 0) |
Ref | Expression |
---|---|
fdvnegge | ⊢ (𝜑 → (𝐹‘𝐵) ≤ (𝐹‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdvposlt.d | . . . 4 ⊢ 𝐸 = (𝐶(,)𝐷) | |
2 | fdvposlt.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐸) | |
3 | fdvposlt.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐸) | |
4 | fdvposlt.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐸⟶ℝ) | |
5 | 4 | ffvelrnda 6961 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐸) → (𝐹‘𝑦) ∈ ℝ) |
6 | 5 | renegcld 11402 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐸) → -(𝐹‘𝑦) ∈ ℝ) |
7 | 6 | fmpttd 6989 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦)):𝐸⟶ℝ) |
8 | reelprrecn 10963 | . . . . . . 7 ⊢ ℝ ∈ {ℝ, ℂ} | |
9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) |
10 | ax-resscn 10928 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
11 | 10, 5 | sselid 3919 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐸) → (𝐹‘𝑦) ∈ ℂ) |
12 | fvexd 6789 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐸) → ((ℝ D 𝐹)‘𝑦) ∈ V) | |
13 | 4 | feqmptd 6837 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ 𝐸 ↦ (𝐹‘𝑦))) |
14 | 13 | oveq2d 7291 | . . . . . . 7 ⊢ (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑦 ∈ 𝐸 ↦ (𝐹‘𝑦)))) |
15 | fdvposlt.c | . . . . . . . . 9 ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℝ)) | |
16 | cncff 24056 | . . . . . . . . 9 ⊢ ((ℝ D 𝐹) ∈ (𝐸–cn→ℝ) → (ℝ D 𝐹):𝐸⟶ℝ) | |
17 | 15, 16 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (ℝ D 𝐹):𝐸⟶ℝ) |
18 | 17 | feqmptd 6837 | . . . . . . 7 ⊢ (𝜑 → (ℝ D 𝐹) = (𝑦 ∈ 𝐸 ↦ ((ℝ D 𝐹)‘𝑦))) |
19 | 14, 18 | eqtr3d 2780 | . . . . . 6 ⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐸 ↦ (𝐹‘𝑦))) = (𝑦 ∈ 𝐸 ↦ ((ℝ D 𝐹)‘𝑦))) |
20 | 9, 11, 12, 19 | dvmptneg 25130 | . . . . 5 ⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦))) = (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦))) |
21 | 17 | ffvelrnda 6961 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐸) → ((ℝ D 𝐹)‘𝑦) ∈ ℝ) |
22 | 21 | renegcld 11402 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐸) → -((ℝ D 𝐹)‘𝑦) ∈ ℝ) |
23 | 22 | fmpttd 6989 | . . . . . 6 ⊢ (𝜑 → (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)):𝐸⟶ℝ) |
24 | ssid 3943 | . . . . . . . . . 10 ⊢ ℂ ⊆ ℂ | |
25 | cncfss 24062 | . . . . . . . . . 10 ⊢ ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐸–cn→ℝ) ⊆ (𝐸–cn→ℂ)) | |
26 | 10, 24, 25 | mp2an 689 | . . . . . . . . 9 ⊢ (𝐸–cn→ℝ) ⊆ (𝐸–cn→ℂ) |
27 | 26, 15 | sselid 3919 | . . . . . . . 8 ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℂ)) |
28 | eqid 2738 | . . . . . . . . 9 ⊢ (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) = (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) | |
29 | 28 | negfcncf 24086 | . . . . . . . 8 ⊢ ((ℝ D 𝐹) ∈ (𝐸–cn→ℂ) → (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸–cn→ℂ)) |
30 | 27, 29 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸–cn→ℂ)) |
31 | cncffvrn 24061 | . . . . . . 7 ⊢ ((ℝ ⊆ ℂ ∧ (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸–cn→ℂ)) → ((𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸–cn→ℝ) ↔ (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)):𝐸⟶ℝ)) | |
32 | 10, 30, 31 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → ((𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸–cn→ℝ) ↔ (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)):𝐸⟶ℝ)) |
33 | 23, 32 | mpbird 256 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸–cn→ℝ)) |
34 | 20, 33 | eqeltrd 2839 | . . . 4 ⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦))) ∈ (𝐸–cn→ℝ)) |
35 | fdvnegge.le | . . . 4 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
36 | fdvnegge.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ≤ 0) | |
37 | 17 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (ℝ D 𝐹):𝐸⟶ℝ) |
38 | ioossicc 13165 | . . . . . . . . . . 11 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
39 | 38 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
40 | 1, 2, 3 | fct2relem 32577 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸) |
41 | 39, 40 | sstrd 3931 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐸) |
42 | 41 | sselda 3921 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ 𝐸) |
43 | 37, 42 | ffvelrnd 6962 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ) |
44 | 43 | le0neg1d 11546 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑥) ≤ 0 ↔ 0 ≤ -((ℝ D 𝐹)‘𝑥))) |
45 | 36, 44 | mpbid 231 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 ≤ -((ℝ D 𝐹)‘𝑥)) |
46 | 20 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (ℝ D (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦))) = (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦))) |
47 | 46 | fveq1d 6776 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦)))‘𝑥) = ((𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦))‘𝑥)) |
48 | 28 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) = (𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦))) |
49 | simpr 485 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥) | |
50 | 49 | fveq2d 6778 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑥) → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘𝑥)) |
51 | 50 | negeqd 11215 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑥) → -((ℝ D 𝐹)‘𝑦) = -((ℝ D 𝐹)‘𝑥)) |
52 | 43 | renegcld 11402 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → -((ℝ D 𝐹)‘𝑥) ∈ ℝ) |
53 | 48, 51, 42, 52 | fvmptd 6882 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((𝑦 ∈ 𝐸 ↦ -((ℝ D 𝐹)‘𝑦))‘𝑥) = -((ℝ D 𝐹)‘𝑥)) |
54 | 47, 53 | eqtrd 2778 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦)))‘𝑥) = -((ℝ D 𝐹)‘𝑥)) |
55 | 45, 54 | breqtrrd 5102 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 ≤ ((ℝ D (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦)))‘𝑥)) |
56 | 1, 2, 3, 7, 34, 35, 55 | fdvposle 32581 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦))‘𝐴) ≤ ((𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦))‘𝐵)) |
57 | eqidd 2739 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦)) = (𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦))) | |
58 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴) | |
59 | 58 | fveq2d 6778 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → (𝐹‘𝑦) = (𝐹‘𝐴)) |
60 | 59 | negeqd 11215 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → -(𝐹‘𝑦) = -(𝐹‘𝐴)) |
61 | 4, 2 | ffvelrnd 6962 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
62 | 61 | renegcld 11402 | . . . 4 ⊢ (𝜑 → -(𝐹‘𝐴) ∈ ℝ) |
63 | 57, 60, 2, 62 | fvmptd 6882 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦))‘𝐴) = -(𝐹‘𝐴)) |
64 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) | |
65 | 64 | fveq2d 6778 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → (𝐹‘𝑦) = (𝐹‘𝐵)) |
66 | 65 | negeqd 11215 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → -(𝐹‘𝑦) = -(𝐹‘𝐵)) |
67 | 4, 3 | ffvelrnd 6962 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐵) ∈ ℝ) |
68 | 67 | renegcld 11402 | . . . 4 ⊢ (𝜑 → -(𝐹‘𝐵) ∈ ℝ) |
69 | 57, 66, 3, 68 | fvmptd 6882 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐸 ↦ -(𝐹‘𝑦))‘𝐵) = -(𝐹‘𝐵)) |
70 | 56, 63, 69 | 3brtr3d 5105 | . 2 ⊢ (𝜑 → -(𝐹‘𝐴) ≤ -(𝐹‘𝐵)) |
71 | 67, 61 | lenegd 11554 | . 2 ⊢ (𝜑 → ((𝐹‘𝐵) ≤ (𝐹‘𝐴) ↔ -(𝐹‘𝐴) ≤ -(𝐹‘𝐵))) |
72 | 70, 71 | mpbird 256 | 1 ⊢ (𝜑 → (𝐹‘𝐵) ≤ (𝐹‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 {cpr 4563 class class class wbr 5074 ↦ cmpt 5157 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝcr 10870 0cc0 10871 ≤ cle 11010 -cneg 11206 (,)cioo 13079 [,]cicc 13082 –cn→ccncf 24039 D cdv 25027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cc 10191 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-symdif 4176 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-disj 5040 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-ofr 7534 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-omul 8302 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-acn 9700 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ioc 13084 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-rlim 15198 df-sum 15398 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-fbas 20594 df-fg 20595 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-lp 22287 df-perf 22288 df-cn 22378 df-cnp 22379 df-haus 22466 df-cmp 22538 df-tx 22713 df-hmeo 22906 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-xms 23473 df-ms 23474 df-tms 23475 df-cncf 24041 df-ovol 24628 df-vol 24629 df-mbf 24783 df-itg1 24784 df-itg2 24785 df-ibl 24786 df-itg 24787 df-0p 24834 df-limc 25030 df-dv 25031 |
This theorem is referenced by: logdivsqrle 32630 |
Copyright terms: Public domain | W3C validator |