Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdvnegge Structured version   Visualization version   GIF version

Theorem fdvnegge 34570
Description: Functions with a nonpositive derivative, i.e., decreasing functions, preserve ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.)
Hypotheses
Ref Expression
fdvposlt.d 𝐸 = (𝐶(,)𝐷)
fdvposlt.a (𝜑𝐴𝐸)
fdvposlt.b (𝜑𝐵𝐸)
fdvposlt.f (𝜑𝐹:𝐸⟶ℝ)
fdvposlt.c (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℝ))
fdvnegge.le (𝜑𝐴𝐵)
fdvnegge.1 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ≤ 0)
Assertion
Ref Expression
fdvnegge (𝜑 → (𝐹𝐵) ≤ (𝐹𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐸   𝑥,𝐹   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem fdvnegge
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fdvposlt.d . . . 4 𝐸 = (𝐶(,)𝐷)
2 fdvposlt.a . . . 4 (𝜑𝐴𝐸)
3 fdvposlt.b . . . 4 (𝜑𝐵𝐸)
4 fdvposlt.f . . . . . . 7 (𝜑𝐹:𝐸⟶ℝ)
54ffvelcdmda 7018 . . . . . 6 ((𝜑𝑦𝐸) → (𝐹𝑦) ∈ ℝ)
65renegcld 11547 . . . . 5 ((𝜑𝑦𝐸) → -(𝐹𝑦) ∈ ℝ)
76fmpttd 7049 . . . 4 (𝜑 → (𝑦𝐸 ↦ -(𝐹𝑦)):𝐸⟶ℝ)
8 reelprrecn 11101 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
98a1i 11 . . . . . 6 (𝜑 → ℝ ∈ {ℝ, ℂ})
10 ax-resscn 11066 . . . . . . 7 ℝ ⊆ ℂ
1110, 5sselid 3933 . . . . . 6 ((𝜑𝑦𝐸) → (𝐹𝑦) ∈ ℂ)
12 fvexd 6837 . . . . . 6 ((𝜑𝑦𝐸) → ((ℝ D 𝐹)‘𝑦) ∈ V)
134feqmptd 6891 . . . . . . . 8 (𝜑𝐹 = (𝑦𝐸 ↦ (𝐹𝑦)))
1413oveq2d 7365 . . . . . . 7 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑦𝐸 ↦ (𝐹𝑦))))
15 fdvposlt.c . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℝ))
16 cncff 24784 . . . . . . . . 9 ((ℝ D 𝐹) ∈ (𝐸cn→ℝ) → (ℝ D 𝐹):𝐸⟶ℝ)
1715, 16syl 17 . . . . . . . 8 (𝜑 → (ℝ D 𝐹):𝐸⟶ℝ)
1817feqmptd 6891 . . . . . . 7 (𝜑 → (ℝ D 𝐹) = (𝑦𝐸 ↦ ((ℝ D 𝐹)‘𝑦)))
1914, 18eqtr3d 2766 . . . . . 6 (𝜑 → (ℝ D (𝑦𝐸 ↦ (𝐹𝑦))) = (𝑦𝐸 ↦ ((ℝ D 𝐹)‘𝑦)))
209, 11, 12, 19dvmptneg 25868 . . . . 5 (𝜑 → (ℝ D (𝑦𝐸 ↦ -(𝐹𝑦))) = (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)))
2117ffvelcdmda 7018 . . . . . . . 8 ((𝜑𝑦𝐸) → ((ℝ D 𝐹)‘𝑦) ∈ ℝ)
2221renegcld 11547 . . . . . . 7 ((𝜑𝑦𝐸) → -((ℝ D 𝐹)‘𝑦) ∈ ℝ)
2322fmpttd 7049 . . . . . 6 (𝜑 → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)):𝐸⟶ℝ)
24 ssid 3958 . . . . . . . . . 10 ℂ ⊆ ℂ
25 cncfss 24790 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐸cn→ℝ) ⊆ (𝐸cn→ℂ))
2610, 24, 25mp2an 692 . . . . . . . . 9 (𝐸cn→ℝ) ⊆ (𝐸cn→ℂ)
2726, 15sselid 3933 . . . . . . . 8 (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℂ))
28 eqid 2729 . . . . . . . . 9 (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) = (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦))
2928negfcncf 24815 . . . . . . . 8 ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℂ))
3027, 29syl 17 . . . . . . 7 (𝜑 → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℂ))
31 cncfcdm 24789 . . . . . . 7 ((ℝ ⊆ ℂ ∧ (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℂ)) → ((𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℝ) ↔ (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)):𝐸⟶ℝ))
3210, 30, 31sylancr 587 . . . . . 6 (𝜑 → ((𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℝ) ↔ (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)):𝐸⟶ℝ))
3323, 32mpbird 257 . . . . 5 (𝜑 → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℝ))
3420, 33eqeltrd 2828 . . . 4 (𝜑 → (ℝ D (𝑦𝐸 ↦ -(𝐹𝑦))) ∈ (𝐸cn→ℝ))
35 fdvnegge.le . . . 4 (𝜑𝐴𝐵)
36 fdvnegge.1 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ≤ 0)
3717adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (ℝ D 𝐹):𝐸⟶ℝ)
38 ioossicc 13336 . . . . . . . . . . 11 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
3938a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
401, 2, 3fct2relem 34565 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸)
4139, 40sstrd 3946 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐸)
4241sselda 3935 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥𝐸)
4337, 42ffvelcdmd 7019 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
4443le0neg1d 11691 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑥) ≤ 0 ↔ 0 ≤ -((ℝ D 𝐹)‘𝑥)))
4536, 44mpbid 232 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≤ -((ℝ D 𝐹)‘𝑥))
4620adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (ℝ D (𝑦𝐸 ↦ -(𝐹𝑦))) = (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)))
4746fveq1d 6824 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑦𝐸 ↦ -(𝐹𝑦)))‘𝑥) = ((𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦))‘𝑥))
4828a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) = (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)))
49 simpr 484 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
5049fveq2d 6826 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑥) → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘𝑥))
5150negeqd 11357 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑥) → -((ℝ D 𝐹)‘𝑦) = -((ℝ D 𝐹)‘𝑥))
5243renegcld 11547 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -((ℝ D 𝐹)‘𝑥) ∈ ℝ)
5348, 51, 42, 52fvmptd 6937 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦))‘𝑥) = -((ℝ D 𝐹)‘𝑥))
5447, 53eqtrd 2764 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑦𝐸 ↦ -(𝐹𝑦)))‘𝑥) = -((ℝ D 𝐹)‘𝑥))
5545, 54breqtrrd 5120 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≤ ((ℝ D (𝑦𝐸 ↦ -(𝐹𝑦)))‘𝑥))
561, 2, 3, 7, 34, 35, 55fdvposle 34569 . . 3 (𝜑 → ((𝑦𝐸 ↦ -(𝐹𝑦))‘𝐴) ≤ ((𝑦𝐸 ↦ -(𝐹𝑦))‘𝐵))
57 eqidd 2730 . . . 4 (𝜑 → (𝑦𝐸 ↦ -(𝐹𝑦)) = (𝑦𝐸 ↦ -(𝐹𝑦)))
58 simpr 484 . . . . . 6 ((𝜑𝑦 = 𝐴) → 𝑦 = 𝐴)
5958fveq2d 6826 . . . . 5 ((𝜑𝑦 = 𝐴) → (𝐹𝑦) = (𝐹𝐴))
6059negeqd 11357 . . . 4 ((𝜑𝑦 = 𝐴) → -(𝐹𝑦) = -(𝐹𝐴))
614, 2ffvelcdmd 7019 . . . . 5 (𝜑 → (𝐹𝐴) ∈ ℝ)
6261renegcld 11547 . . . 4 (𝜑 → -(𝐹𝐴) ∈ ℝ)
6357, 60, 2, 62fvmptd 6937 . . 3 (𝜑 → ((𝑦𝐸 ↦ -(𝐹𝑦))‘𝐴) = -(𝐹𝐴))
64 simpr 484 . . . . . 6 ((𝜑𝑦 = 𝐵) → 𝑦 = 𝐵)
6564fveq2d 6826 . . . . 5 ((𝜑𝑦 = 𝐵) → (𝐹𝑦) = (𝐹𝐵))
6665negeqd 11357 . . . 4 ((𝜑𝑦 = 𝐵) → -(𝐹𝑦) = -(𝐹𝐵))
674, 3ffvelcdmd 7019 . . . . 5 (𝜑 → (𝐹𝐵) ∈ ℝ)
6867renegcld 11547 . . . 4 (𝜑 → -(𝐹𝐵) ∈ ℝ)
6957, 66, 3, 68fvmptd 6937 . . 3 (𝜑 → ((𝑦𝐸 ↦ -(𝐹𝑦))‘𝐵) = -(𝐹𝐵))
7056, 63, 693brtr3d 5123 . 2 (𝜑 → -(𝐹𝐴) ≤ -(𝐹𝐵))
7167, 61lenegd 11699 . 2 (𝜑 → ((𝐹𝐵) ≤ (𝐹𝐴) ↔ -(𝐹𝐴) ≤ -(𝐹𝐵)))
7270, 71mpbird 257 1 (𝜑 → (𝐹𝐵) ≤ (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  wss 3903  {cpr 4579   class class class wbr 5092  cmpt 5173  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  cle 11150  -cneg 11348  (,)cioo 13248  [,]cicc 13251  cnccncf 24767   D cdv 25762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-symdif 4204  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-ovol 25363  df-vol 25364  df-mbf 25518  df-itg1 25519  df-itg2 25520  df-ibl 25521  df-itg 25522  df-0p 25569  df-limc 25765  df-dv 25766
This theorem is referenced by:  logdivsqrle  34618
  Copyright terms: Public domain W3C validator