MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fornex Structured version   Visualization version   GIF version

Theorem fornex 7777
Description: If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
fornex (𝐴𝐶 → (𝐹:𝐴onto𝐵𝐵 ∈ V))

Proof of Theorem fornex
StepHypRef Expression
1 fofun 6678 . . . 4 (𝐹:𝐴onto𝐵 → Fun 𝐹)
2 funrnex 7775 . . . 4 (dom 𝐹𝐶 → (Fun 𝐹 → ran 𝐹 ∈ V))
31, 2syl5com 31 . . 3 (𝐹:𝐴onto𝐵 → (dom 𝐹𝐶 → ran 𝐹 ∈ V))
4 fof 6677 . . . . 5 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
54fdmd 6600 . . . 4 (𝐹:𝐴onto𝐵 → dom 𝐹 = 𝐴)
65eleq1d 2821 . . 3 (𝐹:𝐴onto𝐵 → (dom 𝐹𝐶𝐴𝐶))
7 forn 6680 . . . 4 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
87eleq1d 2821 . . 3 (𝐹:𝐴onto𝐵 → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V))
93, 6, 83imtr3d 292 . 2 (𝐹:𝐴onto𝐵 → (𝐴𝐶𝐵 ∈ V))
109com12 32 1 (𝐴𝐶 → (𝐹:𝐴onto𝐵𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Vcvv 3427  dom cdm 5585  ran crn 5586  Fun wfun 6417  ontowfo 6421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5210  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7571
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3429  df-sbc 3717  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6381  df-fun 6425  df-fn 6426  df-f 6427  df-f1 6428  df-fo 6429  df-f1o 6430  df-fv 6431
This theorem is referenced by:  f1dmex  7778  f1ovv  7779  fsetprcnex  8613  f1oeng  8719  fodomnum  9760  ttukeylem1  10212  fodomb  10229  cnexALT  12671  imasbas  17167  imasds  17168  elqtop  22792  qtoprest  22812  indishmph  22893  imasf1oxmet  23472  foresf1o  30791  noprc  33943  sge0f1o  43852  sge0fodjrnlem  43886
  Copyright terms: Public domain W3C validator