Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucocolem3 Structured version   Visualization version   GIF version

Theorem fucocolem3 49010
Description: Lemma for fucoco 49012. The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 3-Oct-2025.)
Hypotheses
Ref Expression
fucoco.r (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
fucoco.s (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
fucoco.u (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
fucoco.v (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
fucoco.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fucoco.x (𝜑𝑋 = ⟨𝐹, 𝐺⟩)
fucoco.y (𝜑𝑌 = ⟨𝐾, 𝐿⟩)
fucoco.z (𝜑𝑍 = ⟨𝑀, 𝑁⟩)
fucoco.a (𝜑𝐴 = ⟨𝑅, 𝑆⟩)
fucoco.b (𝜑𝐵 = ⟨𝑈, 𝑉⟩)
fucocolem2.t 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
fucocolem2.ot · = (comp‘𝑇)
fucocolem2.od = (comp‘𝐷)
Assertion
Ref Expression
fucocolem3 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(((𝑅‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐿)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘(𝑉𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))))))
Distinct variable groups:   𝑥,   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝑥,𝐺   𝑥,𝐾   𝑥,𝐿   𝑥,𝑀   𝑥,𝑁   𝑥,𝑅   𝑥,𝑆   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑃(𝑥)   𝑇(𝑥)   · (𝑥)   𝑂(𝑥)   𝑌(𝑥)

Proof of Theorem fucocolem3
StepHypRef Expression
1 fucoco.r . . 3 (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
2 fucoco.s . . 3 (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
3 fucoco.u . . 3 (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
4 fucoco.v . . 3 (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
5 fucoco.o . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
6 fucoco.x . . 3 (𝜑𝑋 = ⟨𝐹, 𝐺⟩)
7 fucoco.y . . 3 (𝜑𝑌 = ⟨𝐾, 𝐿⟩)
8 fucoco.z . . 3 (𝜑𝑍 = ⟨𝑀, 𝑁⟩)
9 fucoco.a . . 3 (𝜑𝐴 = ⟨𝑅, 𝑆⟩)
10 fucoco.b . . 3 (𝜑𝐵 = ⟨𝑈, 𝑉⟩)
11 fucocolem2.t . . 3 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
12 fucocolem2.ot . . 3 · = (comp‘𝑇)
13 fucocolem2.od . . 3 = (comp‘𝐷)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13fucocolem2 49009 . 2 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥))))))
15 eqid 2734 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
16 eqid 2734 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
17 eqid 2734 . . . . . 6 (comp‘𝐸) = (comp‘𝐸)
18 relfunc 17879 . . . . . . . 8 Rel (𝐷 Func 𝐸)
19 eqid 2734 . . . . . . . . . . 11 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
2019natrcl 17970 . . . . . . . . . 10 (𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾) → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)))
211, 20syl 17 . . . . . . . . 9 (𝜑 → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)))
2221simpld 494 . . . . . . . 8 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
23 1st2ndbr 8050 . . . . . . . 8 ((Rel (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐷 Func 𝐸)) → (1st𝐹)(𝐷 Func 𝐸)(2nd𝐹))
2418, 22, 23sylancr 587 . . . . . . 7 (𝜑 → (1st𝐹)(𝐷 Func 𝐸)(2nd𝐹))
2524adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝐹)(𝐷 Func 𝐸)(2nd𝐹))
26 eqid 2734 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
27 relfunc 17879 . . . . . . . . 9 Rel (𝐶 Func 𝐷)
28 eqid 2734 . . . . . . . . . . . 12 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
2928natrcl 17970 . . . . . . . . . . 11 (𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿) → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)))
302, 29syl 17 . . . . . . . . . 10 (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)))
3130simpld 494 . . . . . . . . 9 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
32 1st2ndbr 8050 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
3327, 31, 32sylancr 587 . . . . . . . 8 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
3426, 15, 33funcf1 17883 . . . . . . 7 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
3534ffvelcdmda 7085 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
3630simprd 495 . . . . . . . . 9 (𝜑𝐿 ∈ (𝐶 Func 𝐷))
37 1st2ndbr 8050 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)) → (1st𝐿)(𝐶 Func 𝐷)(2nd𝐿))
3827, 36, 37sylancr 587 . . . . . . . 8 (𝜑 → (1st𝐿)(𝐶 Func 𝐷)(2nd𝐿))
3926, 15, 38funcf1 17883 . . . . . . 7 (𝜑 → (1st𝐿):(Base‘𝐶)⟶(Base‘𝐷))
4039ffvelcdmda 7085 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐿)‘𝑥) ∈ (Base‘𝐷))
4128natrcl 17970 . . . . . . . . . . 11 (𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁) → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
424, 41syl 17 . . . . . . . . . 10 (𝜑 → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
4342simprd 495 . . . . . . . . 9 (𝜑𝑁 ∈ (𝐶 Func 𝐷))
44 1st2ndbr 8050 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)) → (1st𝑁)(𝐶 Func 𝐷)(2nd𝑁))
4527, 43, 44sylancr 587 . . . . . . . 8 (𝜑 → (1st𝑁)(𝐶 Func 𝐷)(2nd𝑁))
4626, 15, 45funcf1 17883 . . . . . . 7 (𝜑 → (1st𝑁):(Base‘𝐶)⟶(Base‘𝐷))
4746ffvelcdmda 7085 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝑁)‘𝑥) ∈ (Base‘𝐷))
4828, 2nat1st2nd 17971 . . . . . . . 8 (𝜑𝑆 ∈ (⟨(1st𝐺), (2nd𝐺)⟩(𝐶 Nat 𝐷)⟨(1st𝐿), (2nd𝐿)⟩))
4948adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑆 ∈ (⟨(1st𝐺), (2nd𝐺)⟩(𝐶 Nat 𝐷)⟨(1st𝐿), (2nd𝐿)⟩))
50 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
5128, 49, 26, 16, 50natcl 17973 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑆𝑥) ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐿)‘𝑥)))
5228, 4nat1st2nd 17971 . . . . . . . 8 (𝜑𝑉 ∈ (⟨(1st𝐿), (2nd𝐿)⟩(𝐶 Nat 𝐷)⟨(1st𝑁), (2nd𝑁)⟩))
5352adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑉 ∈ (⟨(1st𝐿), (2nd𝐿)⟩(𝐶 Nat 𝐷)⟨(1st𝑁), (2nd𝑁)⟩))
5428, 53, 26, 16, 50natcl 17973 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑉𝑥) ∈ (((1st𝐿)‘𝑥)(Hom ‘𝐷)((1st𝑁)‘𝑥)))
5515, 16, 13, 17, 25, 35, 40, 47, 51, 54funcco 17888 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥))) = (((((1st𝐿)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘(𝑉𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐹)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))))
5655oveq2d 7430 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥)))) = (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(((((1st𝐿)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘(𝑉𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐹)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥)))))
571adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
582adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
593adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
604adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
6122adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹 ∈ (𝐷 Func 𝐸))
6243adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑁 ∈ (𝐶 Func 𝐷))
6319, 1nat1st2nd 17971 . . . . . . 7 (𝜑𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩(𝐷 Nat 𝐸)⟨(1st𝐾), (2nd𝐾)⟩))
6463adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩(𝐷 Nat 𝐸)⟨(1st𝐾), (2nd𝐾)⟩))
65 eqid 2734 . . . . . 6 (Hom ‘𝐸) = (Hom ‘𝐸)
6619, 64, 15, 65, 47natcl 17973 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑅‘((1st𝑁)‘𝑥)) ∈ (((1st𝐹)‘((1st𝑁)‘𝑥))(Hom ‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑥))))
6715, 16, 65, 25, 40, 47funcf2 17885 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((1st𝐿)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥)):(((1st𝐿)‘𝑥)(Hom ‘𝐷)((1st𝑁)‘𝑥))⟶(((1st𝐹)‘((1st𝐿)‘𝑥))(Hom ‘𝐸)((1st𝐹)‘((1st𝑁)‘𝑥))))
6867, 54ffvelcdmd 7086 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((((1st𝐿)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘(𝑉𝑥)) ∈ (((1st𝐹)‘((1st𝐿)‘𝑥))(Hom ‘𝐸)((1st𝐹)‘((1st𝑁)‘𝑥))))
6957, 58, 59, 60, 50, 61, 62, 66, 68fucocolem1 49008 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(((((1st𝐿)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘(𝑉𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐹)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥)))) = ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(((𝑅‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐿)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘(𝑉𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥)))))
7056, 69eqtrd 2769 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥)))) = ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(((𝑅‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐿)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘(𝑉𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥)))))
7170mpteq2dva 5224 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥))))) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(((𝑅‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐿)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘(𝑉𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))))))
7214, 71eqtrd 2769 1 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(((𝑅‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐿)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘(𝑉𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cop 4614   class class class wbr 5125  cmpt 5207  Rel wrel 5672  cfv 6542  (class class class)co 7414  1st c1st 7995  2nd c2nd 7996  Basecbs 17230  Hom chom 17285  compcco 17286   Func cfunc 17871   Nat cnat 17961   FuncCat cfuc 17962   ×c cxpc 18184  F cfuco 48971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-er 8728  df-map 8851  df-ixp 8921  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-6 12316  df-7 12317  df-8 12318  df-9 12319  df-n0 12511  df-z 12598  df-dec 12718  df-uz 12862  df-fz 13531  df-struct 17167  df-slot 17202  df-ndx 17214  df-base 17231  df-hom 17298  df-cco 17299  df-cat 17683  df-func 17875  df-cofu 17877  df-nat 17963  df-fuc 17964  df-xpc 18188  df-fuco 48972
This theorem is referenced by:  fucoco  49012
  Copyright terms: Public domain W3C validator