Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucocolem3 Structured version   Visualization version   GIF version

Theorem fucocolem3 49386
Description: Lemma for fucoco 49388. The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 3-Oct-2025.)
Hypotheses
Ref Expression
fucoco.r (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
fucoco.s (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
fucoco.u (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
fucoco.v (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
fucoco.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fucoco.x (𝜑𝑋 = ⟨𝐹, 𝐺⟩)
fucoco.y (𝜑𝑌 = ⟨𝐾, 𝐿⟩)
fucoco.z (𝜑𝑍 = ⟨𝑀, 𝑁⟩)
fucoco.a (𝜑𝐴 = ⟨𝑅, 𝑆⟩)
fucoco.b (𝜑𝐵 = ⟨𝑈, 𝑉⟩)
fucocolem2.t 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
fucocolem2.ot · = (comp‘𝑇)
fucocolem2.od = (comp‘𝐷)
Assertion
Ref Expression
fucocolem3 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(((𝑅‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐿)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘(𝑉𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))))))
Distinct variable groups:   𝑥,   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝑥,𝐺   𝑥,𝐾   𝑥,𝐿   𝑥,𝑀   𝑥,𝑁   𝑥,𝑅   𝑥,𝑆   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑃(𝑥)   𝑇(𝑥)   · (𝑥)   𝑂(𝑥)   𝑌(𝑥)

Proof of Theorem fucocolem3
StepHypRef Expression
1 fucoco.r . . 3 (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
2 fucoco.s . . 3 (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
3 fucoco.u . . 3 (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
4 fucoco.v . . 3 (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
5 fucoco.o . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
6 fucoco.x . . 3 (𝜑𝑋 = ⟨𝐹, 𝐺⟩)
7 fucoco.y . . 3 (𝜑𝑌 = ⟨𝐾, 𝐿⟩)
8 fucoco.z . . 3 (𝜑𝑍 = ⟨𝑀, 𝑁⟩)
9 fucoco.a . . 3 (𝜑𝐴 = ⟨𝑅, 𝑆⟩)
10 fucoco.b . . 3 (𝜑𝐵 = ⟨𝑈, 𝑉⟩)
11 fucocolem2.t . . 3 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
12 fucocolem2.ot . . 3 · = (comp‘𝑇)
13 fucocolem2.od . . 3 = (comp‘𝐷)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13fucocolem2 49385 . 2 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥))))))
15 eqid 2731 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
16 eqid 2731 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
17 eqid 2731 . . . . . 6 (comp‘𝐸) = (comp‘𝐸)
18 eqid 2731 . . . . . . . . . . 11 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
1918natrcl 17857 . . . . . . . . . 10 (𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾) → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)))
201, 19syl 17 . . . . . . . . 9 (𝜑 → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)))
2120simpld 494 . . . . . . . 8 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
2221func1st2nd 49107 . . . . . . 7 (𝜑 → (1st𝐹)(𝐷 Func 𝐸)(2nd𝐹))
2322adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝐹)(𝐷 Func 𝐸)(2nd𝐹))
24 eqid 2731 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
25 eqid 2731 . . . . . . . . . . . 12 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
2625natrcl 17857 . . . . . . . . . . 11 (𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿) → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)))
272, 26syl 17 . . . . . . . . . 10 (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)))
2827simpld 494 . . . . . . . . 9 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
2928func1st2nd 49107 . . . . . . . 8 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
3024, 15, 29funcf1 17770 . . . . . . 7 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
3130ffvelcdmda 7017 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
3227simprd 495 . . . . . . . . 9 (𝜑𝐿 ∈ (𝐶 Func 𝐷))
3332func1st2nd 49107 . . . . . . . 8 (𝜑 → (1st𝐿)(𝐶 Func 𝐷)(2nd𝐿))
3424, 15, 33funcf1 17770 . . . . . . 7 (𝜑 → (1st𝐿):(Base‘𝐶)⟶(Base‘𝐷))
3534ffvelcdmda 7017 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐿)‘𝑥) ∈ (Base‘𝐷))
3625natrcl 17857 . . . . . . . . . . 11 (𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁) → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
374, 36syl 17 . . . . . . . . . 10 (𝜑 → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
3837simprd 495 . . . . . . . . 9 (𝜑𝑁 ∈ (𝐶 Func 𝐷))
3938func1st2nd 49107 . . . . . . . 8 (𝜑 → (1st𝑁)(𝐶 Func 𝐷)(2nd𝑁))
4024, 15, 39funcf1 17770 . . . . . . 7 (𝜑 → (1st𝑁):(Base‘𝐶)⟶(Base‘𝐷))
4140ffvelcdmda 7017 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝑁)‘𝑥) ∈ (Base‘𝐷))
4225, 2nat1st2nd 17858 . . . . . . . 8 (𝜑𝑆 ∈ (⟨(1st𝐺), (2nd𝐺)⟩(𝐶 Nat 𝐷)⟨(1st𝐿), (2nd𝐿)⟩))
4342adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑆 ∈ (⟨(1st𝐺), (2nd𝐺)⟩(𝐶 Nat 𝐷)⟨(1st𝐿), (2nd𝐿)⟩))
44 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
4525, 43, 24, 16, 44natcl 17860 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑆𝑥) ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐿)‘𝑥)))
4625, 4nat1st2nd 17858 . . . . . . . 8 (𝜑𝑉 ∈ (⟨(1st𝐿), (2nd𝐿)⟩(𝐶 Nat 𝐷)⟨(1st𝑁), (2nd𝑁)⟩))
4746adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑉 ∈ (⟨(1st𝐿), (2nd𝐿)⟩(𝐶 Nat 𝐷)⟨(1st𝑁), (2nd𝑁)⟩))
4825, 47, 24, 16, 44natcl 17860 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑉𝑥) ∈ (((1st𝐿)‘𝑥)(Hom ‘𝐷)((1st𝑁)‘𝑥)))
4915, 16, 13, 17, 23, 31, 35, 41, 45, 48funcco 17775 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥))) = (((((1st𝐿)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘(𝑉𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐹)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))))
5049oveq2d 7362 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥)))) = (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(((((1st𝐿)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘(𝑉𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐹)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥)))))
511adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
522adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
533adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
544adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
5521adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹 ∈ (𝐷 Func 𝐸))
5638adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑁 ∈ (𝐶 Func 𝐷))
5718, 1nat1st2nd 17858 . . . . . . 7 (𝜑𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩(𝐷 Nat 𝐸)⟨(1st𝐾), (2nd𝐾)⟩))
5857adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩(𝐷 Nat 𝐸)⟨(1st𝐾), (2nd𝐾)⟩))
59 eqid 2731 . . . . . 6 (Hom ‘𝐸) = (Hom ‘𝐸)
6018, 58, 15, 59, 41natcl 17860 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑅‘((1st𝑁)‘𝑥)) ∈ (((1st𝐹)‘((1st𝑁)‘𝑥))(Hom ‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑥))))
6115, 16, 59, 23, 35, 41funcf2 17772 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((1st𝐿)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥)):(((1st𝐿)‘𝑥)(Hom ‘𝐷)((1st𝑁)‘𝑥))⟶(((1st𝐹)‘((1st𝐿)‘𝑥))(Hom ‘𝐸)((1st𝐹)‘((1st𝑁)‘𝑥))))
6261, 48ffvelcdmd 7018 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((((1st𝐿)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘(𝑉𝑥)) ∈ (((1st𝐹)‘((1st𝐿)‘𝑥))(Hom ‘𝐸)((1st𝐹)‘((1st𝑁)‘𝑥))))
6351, 52, 53, 54, 44, 55, 56, 60, 62fucocolem1 49384 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(((((1st𝐿)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘(𝑉𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐹)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥)))) = ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(((𝑅‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐿)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘(𝑉𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥)))))
6450, 63eqtrd 2766 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥)))) = ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(((𝑅‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐿)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘(𝑉𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥)))))
6564mpteq2dva 5184 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥))))) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(((𝑅‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐿)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘(𝑉𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))))))
6614, 65eqtrd 2766 1 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(((𝑅‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐿)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘(𝑉𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cop 4582   class class class wbr 5091  cmpt 5172  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  Basecbs 17117  Hom chom 17169  compcco 17170   Func cfunc 17758   Nat cnat 17848   FuncCat cfuc 17849   ×c cxpc 18071  F cfuco 49347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-struct 17055  df-slot 17090  df-ndx 17102  df-base 17118  df-hom 17182  df-cco 17183  df-cat 17571  df-func 17762  df-cofu 17764  df-nat 17850  df-fuc 17851  df-xpc 18075  df-fuco 49348
This theorem is referenced by:  fucoco  49388
  Copyright terms: Public domain W3C validator