![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzssfzo | Structured version Visualization version GIF version |
Description: Condition for an integer interval to be a subset of a half-open integer interval. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
Ref | Expression |
---|---|
fzssfzo | ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝑀...𝐾) ⊆ (𝑀..^𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoel2 13635 | . . . . . 6 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ) | |
2 | fzoval 13637 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
4 | 3 | eleq2d 2817 | . . . 4 ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝐾 ∈ (𝑀..^𝑁) ↔ 𝐾 ∈ (𝑀...(𝑁 − 1)))) |
5 | 4 | ibi 266 | . . 3 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (𝑀...(𝑁 − 1))) |
6 | elfzuz3 13502 | . . 3 ⊢ (𝐾 ∈ (𝑀...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ≥‘𝐾)) | |
7 | fzss2 13545 | . . 3 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘𝐾) → (𝑀...𝐾) ⊆ (𝑀...(𝑁 − 1))) | |
8 | 5, 6, 7 | 3syl 18 | . 2 ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝑀...𝐾) ⊆ (𝑀...(𝑁 − 1))) |
9 | 8, 3 | sseqtrrd 4022 | 1 ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝑀...𝐾) ⊆ (𝑀..^𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ⊆ wss 3947 ‘cfv 6542 (class class class)co 7411 1c1 11113 − cmin 11448 ℤcz 12562 ℤ≥cuz 12826 ...cfz 13488 ..^cfzo 13631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-neg 11451 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 |
This theorem is referenced by: signstcl 33874 signstf 33875 signstfvp 33880 |
Copyright terms: Public domain | W3C validator |