Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzssfzo Structured version   Visualization version   GIF version

Theorem fzssfzo 34552
Description: Condition for an integer interval to be a subset of a half-open integer interval. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Assertion
Ref Expression
fzssfzo (𝐾 ∈ (𝑀..^𝑁) → (𝑀...𝐾) ⊆ (𝑀..^𝑁))

Proof of Theorem fzssfzo
StepHypRef Expression
1 elfzoel2 13558 . . . . . 6 (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
2 fzoval 13560 . . . . . 6 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
31, 2syl 17 . . . . 5 (𝐾 ∈ (𝑀..^𝑁) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
43eleq2d 2817 . . . 4 (𝐾 ∈ (𝑀..^𝑁) → (𝐾 ∈ (𝑀..^𝑁) ↔ 𝐾 ∈ (𝑀...(𝑁 − 1))))
54ibi 267 . . 3 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (𝑀...(𝑁 − 1)))
6 elfzuz3 13421 . . 3 (𝐾 ∈ (𝑀...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ𝐾))
7 fzss2 13464 . . 3 ((𝑁 − 1) ∈ (ℤ𝐾) → (𝑀...𝐾) ⊆ (𝑀...(𝑁 − 1)))
85, 6, 73syl 18 . 2 (𝐾 ∈ (𝑀..^𝑁) → (𝑀...𝐾) ⊆ (𝑀...(𝑁 − 1)))
98, 3sseqtrrd 3967 1 (𝐾 ∈ (𝑀..^𝑁) → (𝑀...𝐾) ⊆ (𝑀..^𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wss 3897  cfv 6481  (class class class)co 7346  1c1 11007  cmin 11344  cz 12468  cuz 12732  ...cfz 13407  ..^cfzo 13554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-neg 11347  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555
This theorem is referenced by:  signstcl  34578  signstf  34579  signstfvp  34584
  Copyright terms: Public domain W3C validator