Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzssfzo Structured version   Visualization version   GIF version

Theorem fzssfzo 34530
Description: Condition for an integer interval to be a subset of a half-open integer interval. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Assertion
Ref Expression
fzssfzo (𝐾 ∈ (𝑀..^𝑁) → (𝑀...𝐾) ⊆ (𝑀..^𝑁))

Proof of Theorem fzssfzo
StepHypRef Expression
1 elfzoel2 13619 . . . . . 6 (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
2 fzoval 13621 . . . . . 6 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
31, 2syl 17 . . . . 5 (𝐾 ∈ (𝑀..^𝑁) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
43eleq2d 2814 . . . 4 (𝐾 ∈ (𝑀..^𝑁) → (𝐾 ∈ (𝑀..^𝑁) ↔ 𝐾 ∈ (𝑀...(𝑁 − 1))))
54ibi 267 . . 3 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (𝑀...(𝑁 − 1)))
6 elfzuz3 13482 . . 3 (𝐾 ∈ (𝑀...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ𝐾))
7 fzss2 13525 . . 3 ((𝑁 − 1) ∈ (ℤ𝐾) → (𝑀...𝐾) ⊆ (𝑀...(𝑁 − 1)))
85, 6, 73syl 18 . 2 (𝐾 ∈ (𝑀..^𝑁) → (𝑀...𝐾) ⊆ (𝑀...(𝑁 − 1)))
98, 3sseqtrrd 3984 1 (𝐾 ∈ (𝑀..^𝑁) → (𝑀...𝐾) ⊆ (𝑀..^𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3914  cfv 6511  (class class class)co 7387  1c1 11069  cmin 11405  cz 12529  cuz 12793  ...cfz 13468  ..^cfzo 13615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-neg 11408  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616
This theorem is referenced by:  signstcl  34556  signstf  34557  signstfvp  34562
  Copyright terms: Public domain W3C validator