| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fzssfzo | Structured version Visualization version GIF version | ||
| Description: Condition for an integer interval to be a subset of a half-open integer interval. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
| Ref | Expression |
|---|---|
| fzssfzo | ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝑀...𝐾) ⊆ (𝑀..^𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel2 13561 | . . . . . 6 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ) | |
| 2 | fzoval 13563 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 4 | 3 | eleq2d 2814 | . . . 4 ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝐾 ∈ (𝑀..^𝑁) ↔ 𝐾 ∈ (𝑀...(𝑁 − 1)))) |
| 5 | 4 | ibi 267 | . . 3 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (𝑀...(𝑁 − 1))) |
| 6 | elfzuz3 13424 | . . 3 ⊢ (𝐾 ∈ (𝑀...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ≥‘𝐾)) | |
| 7 | fzss2 13467 | . . 3 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘𝐾) → (𝑀...𝐾) ⊆ (𝑀...(𝑁 − 1))) | |
| 8 | 5, 6, 7 | 3syl 18 | . 2 ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝑀...𝐾) ⊆ (𝑀...(𝑁 − 1))) |
| 9 | 8, 3 | sseqtrrd 3973 | 1 ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝑀...𝐾) ⊆ (𝑀..^𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 ‘cfv 6482 (class class class)co 7349 1c1 11010 − cmin 11347 ℤcz 12471 ℤ≥cuz 12735 ...cfz 13410 ..^cfzo 13557 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-neg 11350 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 |
| This theorem is referenced by: signstcl 34533 signstf 34534 signstfvp 34539 |
| Copyright terms: Public domain | W3C validator |