Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumncl Structured version   Visualization version   GIF version

Theorem gsumncl 31810
Description: Closure of a group sum in a non-commutative monoid. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
gsumncl.k 𝐾 = (Base‘𝑀)
gsumncl.w (𝜑𝑀 ∈ Mnd)
gsumncl.p (𝜑𝑃 ∈ (ℤ𝑁))
gsumncl.b ((𝜑𝑘 ∈ (𝑁...𝑃)) → 𝐵𝐾)
Assertion
Ref Expression
gsumncl (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) ∈ 𝐾)
Distinct variable groups:   𝑘,𝐾   𝑘,𝑁   𝑃,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝑀(𝑘)

Proof of Theorem gsumncl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumncl.k . . 3 𝐾 = (Base‘𝑀)
2 eqid 2821 . . 3 (+g𝑀) = (+g𝑀)
3 gsumncl.w . . 3 (𝜑𝑀 ∈ Mnd)
4 gsumncl.p . . 3 (𝜑𝑃 ∈ (ℤ𝑁))
5 gsumncl.b . . . 4 ((𝜑𝑘 ∈ (𝑁...𝑃)) → 𝐵𝐾)
65fmpttd 6879 . . 3 (𝜑 → (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵):(𝑁...𝑃)⟶𝐾)
71, 2, 3, 4, 6gsumval2 17896 . 2 (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) = (seq𝑁((+g𝑀), (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))‘𝑃))
86ffvelrnda 6851 . . 3 ((𝜑𝑥 ∈ (𝑁...𝑃)) → ((𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)‘𝑥) ∈ 𝐾)
93adantr 483 . . . 4 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → 𝑀 ∈ Mnd)
10 simprl 769 . . . 4 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → 𝑥𝐾)
11 simprr 771 . . . 4 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → 𝑦𝐾)
121, 2mndcl 17919 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑥𝐾𝑦𝐾) → (𝑥(+g𝑀)𝑦) ∈ 𝐾)
139, 10, 11, 12syl3anc 1367 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝑀)𝑦) ∈ 𝐾)
144, 8, 13seqcl 13391 . 2 (𝜑 → (seq𝑁((+g𝑀), (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))‘𝑃) ∈ 𝐾)
157, 14eqeltrd 2913 1 (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cmpt 5146  cfv 6355  (class class class)co 7156  cuz 12244  ...cfz 12893  seqcseq 13370  Basecbs 16483  +gcplusg 16565   Σg cgsu 16714  Mndcmnd 17911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-seq 13371  df-0g 16715  df-gsum 16716  df-mgm 17852  df-sgrp 17901  df-mnd 17912
This theorem is referenced by:  signstcl  31835  signstf  31836
  Copyright terms: Public domain W3C validator