Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumncl Structured version   Visualization version   GIF version

Theorem gsumncl 34517
Description: Closure of a group sum in a non-commutative monoid. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
gsumncl.k 𝐾 = (Base‘𝑀)
gsumncl.w (𝜑𝑀 ∈ Mnd)
gsumncl.p (𝜑𝑃 ∈ (ℤ𝑁))
gsumncl.b ((𝜑𝑘 ∈ (𝑁...𝑃)) → 𝐵𝐾)
Assertion
Ref Expression
gsumncl (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) ∈ 𝐾)
Distinct variable groups:   𝑘,𝐾   𝑘,𝑁   𝑃,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝑀(𝑘)

Proof of Theorem gsumncl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumncl.k . . 3 𝐾 = (Base‘𝑀)
2 eqid 2740 . . 3 (+g𝑀) = (+g𝑀)
3 gsumncl.w . . 3 (𝜑𝑀 ∈ Mnd)
4 gsumncl.p . . 3 (𝜑𝑃 ∈ (ℤ𝑁))
5 gsumncl.b . . . 4 ((𝜑𝑘 ∈ (𝑁...𝑃)) → 𝐵𝐾)
65fmpttd 7149 . . 3 (𝜑 → (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵):(𝑁...𝑃)⟶𝐾)
71, 2, 3, 4, 6gsumval2 18724 . 2 (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) = (seq𝑁((+g𝑀), (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))‘𝑃))
86ffvelcdmda 7118 . . 3 ((𝜑𝑥 ∈ (𝑁...𝑃)) → ((𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)‘𝑥) ∈ 𝐾)
93adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → 𝑀 ∈ Mnd)
10 simprl 770 . . . 4 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → 𝑥𝐾)
11 simprr 772 . . . 4 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → 𝑦𝐾)
121, 2mndcl 18780 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑥𝐾𝑦𝐾) → (𝑥(+g𝑀)𝑦) ∈ 𝐾)
139, 10, 11, 12syl3anc 1371 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝑀)𝑦) ∈ 𝐾)
144, 8, 13seqcl 14073 . 2 (𝜑 → (seq𝑁((+g𝑀), (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))‘𝑃) ∈ 𝐾)
157, 14eqeltrd 2844 1 (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cmpt 5249  cfv 6573  (class class class)co 7448  cuz 12903  ...cfz 13567  seqcseq 14052  Basecbs 17258  +gcplusg 17311   Σg cgsu 17500  Mndcmnd 18772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-seq 14053  df-0g 17501  df-gsum 17502  df-mgm 18678  df-sgrp 18757  df-mnd 18773
This theorem is referenced by:  signstcl  34542  signstf  34543
  Copyright terms: Public domain W3C validator