![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumncl | Structured version Visualization version GIF version |
Description: Closure of a group sum in a non-commutative monoid. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
Ref | Expression |
---|---|
gsumncl.k | ⊢ 𝐾 = (Base‘𝑀) |
gsumncl.w | ⊢ (𝜑 → 𝑀 ∈ Mnd) |
gsumncl.p | ⊢ (𝜑 → 𝑃 ∈ (ℤ≥‘𝑁)) |
gsumncl.b | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁...𝑃)) → 𝐵 ∈ 𝐾) |
Ref | Expression |
---|---|
gsumncl | ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumncl.k | . . 3 ⊢ 𝐾 = (Base‘𝑀) | |
2 | eqid 2730 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
3 | gsumncl.w | . . 3 ⊢ (𝜑 → 𝑀 ∈ Mnd) | |
4 | gsumncl.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (ℤ≥‘𝑁)) | |
5 | gsumncl.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁...𝑃)) → 𝐵 ∈ 𝐾) | |
6 | 5 | fmpttd 7115 | . . 3 ⊢ (𝜑 → (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵):(𝑁...𝑃)⟶𝐾) |
7 | 1, 2, 3, 4, 6 | gsumval2 18611 | . 2 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) = (seq𝑁((+g‘𝑀), (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))‘𝑃)) |
8 | 6 | ffvelcdmda 7085 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁...𝑃)) → ((𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)‘𝑥) ∈ 𝐾) |
9 | 3 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → 𝑀 ∈ Mnd) |
10 | simprl 767 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → 𝑥 ∈ 𝐾) | |
11 | simprr 769 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → 𝑦 ∈ 𝐾) | |
12 | 1, 2 | mndcl 18667 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐾) |
13 | 9, 10, 11, 12 | syl3anc 1369 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐾) |
14 | 4, 8, 13 | seqcl 13992 | . 2 ⊢ (𝜑 → (seq𝑁((+g‘𝑀), (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))‘𝑃) ∈ 𝐾) |
15 | 7, 14 | eqeltrd 2831 | 1 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ↦ cmpt 5230 ‘cfv 6542 (class class class)co 7411 ℤ≥cuz 12826 ...cfz 13488 seqcseq 13970 Basecbs 17148 +gcplusg 17201 Σg cgsu 17390 Mndcmnd 18659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-seq 13971 df-0g 17391 df-gsum 17392 df-mgm 18565 df-sgrp 18644 df-mnd 18660 |
This theorem is referenced by: signstcl 33874 signstf 33875 |
Copyright terms: Public domain | W3C validator |