![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumncl | Structured version Visualization version GIF version |
Description: Closure of a group sum in a non-commutative monoid. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
Ref | Expression |
---|---|
gsumncl.k | ⊢ 𝐾 = (Base‘𝑀) |
gsumncl.w | ⊢ (𝜑 → 𝑀 ∈ Mnd) |
gsumncl.p | ⊢ (𝜑 → 𝑃 ∈ (ℤ≥‘𝑁)) |
gsumncl.b | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁...𝑃)) → 𝐵 ∈ 𝐾) |
Ref | Expression |
---|---|
gsumncl | ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumncl.k | . . 3 ⊢ 𝐾 = (Base‘𝑀) | |
2 | eqid 2825 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
3 | gsumncl.w | . . 3 ⊢ (𝜑 → 𝑀 ∈ Mnd) | |
4 | gsumncl.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (ℤ≥‘𝑁)) | |
5 | gsumncl.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁...𝑃)) → 𝐵 ∈ 𝐾) | |
6 | 5 | fmpttd 6634 | . . 3 ⊢ (𝜑 → (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵):(𝑁...𝑃)⟶𝐾) |
7 | 1, 2, 3, 4, 6 | gsumval2 17633 | . 2 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) = (seq𝑁((+g‘𝑀), (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))‘𝑃)) |
8 | 6 | ffvelrnda 6608 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁...𝑃)) → ((𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)‘𝑥) ∈ 𝐾) |
9 | 3 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → 𝑀 ∈ Mnd) |
10 | simprl 787 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → 𝑥 ∈ 𝐾) | |
11 | simprr 789 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → 𝑦 ∈ 𝐾) | |
12 | 1, 2 | mndcl 17654 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐾) |
13 | 9, 10, 11, 12 | syl3anc 1494 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐾) |
14 | 4, 8, 13 | seqcl 13115 | . 2 ⊢ (𝜑 → (seq𝑁((+g‘𝑀), (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))‘𝑃) ∈ 𝐾) |
15 | 7, 14 | eqeltrd 2906 | 1 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ↦ cmpt 4952 ‘cfv 6123 (class class class)co 6905 ℤ≥cuz 11968 ...cfz 12619 seqcseq 13095 Basecbs 16222 +gcplusg 16305 Σg cgsu 16454 Mndcmnd 17647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-n0 11619 df-z 11705 df-uz 11969 df-fz 12620 df-seq 13096 df-0g 16455 df-gsum 16456 df-mgm 17595 df-sgrp 17637 df-mnd 17648 |
This theorem is referenced by: signstcl 31178 signstf 31179 |
Copyright terms: Public domain | W3C validator |