Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumncl Structured version   Visualization version   GIF version

Theorem gsumncl 33539
Description: Closure of a group sum in a non-commutative monoid. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
gsumncl.k 𝐾 = (Base‘𝑀)
gsumncl.w (𝜑𝑀 ∈ Mnd)
gsumncl.p (𝜑𝑃 ∈ (ℤ𝑁))
gsumncl.b ((𝜑𝑘 ∈ (𝑁...𝑃)) → 𝐵𝐾)
Assertion
Ref Expression
gsumncl (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) ∈ 𝐾)
Distinct variable groups:   𝑘,𝐾   𝑘,𝑁   𝑃,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝑀(𝑘)

Proof of Theorem gsumncl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumncl.k . . 3 𝐾 = (Base‘𝑀)
2 eqid 2732 . . 3 (+g𝑀) = (+g𝑀)
3 gsumncl.w . . 3 (𝜑𝑀 ∈ Mnd)
4 gsumncl.p . . 3 (𝜑𝑃 ∈ (ℤ𝑁))
5 gsumncl.b . . . 4 ((𝜑𝑘 ∈ (𝑁...𝑃)) → 𝐵𝐾)
65fmpttd 7111 . . 3 (𝜑 → (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵):(𝑁...𝑃)⟶𝐾)
71, 2, 3, 4, 6gsumval2 18601 . 2 (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) = (seq𝑁((+g𝑀), (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))‘𝑃))
86ffvelcdmda 7083 . . 3 ((𝜑𝑥 ∈ (𝑁...𝑃)) → ((𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)‘𝑥) ∈ 𝐾)
93adantr 481 . . . 4 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → 𝑀 ∈ Mnd)
10 simprl 769 . . . 4 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → 𝑥𝐾)
11 simprr 771 . . . 4 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → 𝑦𝐾)
121, 2mndcl 18629 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑥𝐾𝑦𝐾) → (𝑥(+g𝑀)𝑦) ∈ 𝐾)
139, 10, 11, 12syl3anc 1371 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝑀)𝑦) ∈ 𝐾)
144, 8, 13seqcl 13984 . 2 (𝜑 → (seq𝑁((+g𝑀), (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))‘𝑃) ∈ 𝐾)
157, 14eqeltrd 2833 1 (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cmpt 5230  cfv 6540  (class class class)co 7405  cuz 12818  ...cfz 13480  seqcseq 13962  Basecbs 17140  +gcplusg 17193   Σg cgsu 17382  Mndcmnd 18621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-seq 13963  df-0g 17383  df-gsum 17384  df-mgm 18557  df-sgrp 18606  df-mnd 18622
This theorem is referenced by:  signstcl  33564  signstf  33565
  Copyright terms: Public domain W3C validator