| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumncl | Structured version Visualization version GIF version | ||
| Description: Closure of a group sum in a non-commutative monoid. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
| Ref | Expression |
|---|---|
| gsumncl.k | ⊢ 𝐾 = (Base‘𝑀) |
| gsumncl.w | ⊢ (𝜑 → 𝑀 ∈ Mnd) |
| gsumncl.p | ⊢ (𝜑 → 𝑃 ∈ (ℤ≥‘𝑁)) |
| gsumncl.b | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁...𝑃)) → 𝐵 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| gsumncl | ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumncl.k | . . 3 ⊢ 𝐾 = (Base‘𝑀) | |
| 2 | eqid 2731 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 3 | gsumncl.w | . . 3 ⊢ (𝜑 → 𝑀 ∈ Mnd) | |
| 4 | gsumncl.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (ℤ≥‘𝑁)) | |
| 5 | gsumncl.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁...𝑃)) → 𝐵 ∈ 𝐾) | |
| 6 | 5 | fmpttd 7048 | . . 3 ⊢ (𝜑 → (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵):(𝑁...𝑃)⟶𝐾) |
| 7 | 1, 2, 3, 4, 6 | gsumval2 18594 | . 2 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) = (seq𝑁((+g‘𝑀), (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))‘𝑃)) |
| 8 | 6 | ffvelcdmda 7017 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁...𝑃)) → ((𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)‘𝑥) ∈ 𝐾) |
| 9 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → 𝑀 ∈ Mnd) |
| 10 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → 𝑥 ∈ 𝐾) | |
| 11 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → 𝑦 ∈ 𝐾) | |
| 12 | 1, 2 | mndcl 18650 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐾) |
| 13 | 9, 10, 11, 12 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐾) |
| 14 | 4, 8, 13 | seqcl 13929 | . 2 ⊢ (𝜑 → (seq𝑁((+g‘𝑀), (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))‘𝑃) ∈ 𝐾) |
| 15 | 7, 14 | eqeltrd 2831 | 1 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 ℤ≥cuz 12732 ...cfz 13407 seqcseq 13908 Basecbs 17120 +gcplusg 17161 Σg cgsu 17344 Mndcmnd 18642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-seq 13909 df-0g 17345 df-gsum 17346 df-mgm 18548 df-sgrp 18627 df-mnd 18643 |
| This theorem is referenced by: signstcl 34578 signstf 34579 |
| Copyright terms: Public domain | W3C validator |