| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzuz3 | Structured version Visualization version GIF version | ||
| Description: Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzuz3 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuzb 13540 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 ℤ≥cuz 12857 ...cfz 13529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-neg 11474 df-z 12594 df-uz 12858 df-fz 13530 |
| This theorem is referenced by: elfzel2 13544 elfzle2 13550 peano2fzr 13559 fzsplit2 13571 fzsplit 13572 fznn0sub 13578 fzopth 13583 fzss1 13585 fzss2 13586 fzp1elp1 13599 predfz 13675 fzosplit 13714 fzoend 13778 fzofzp1b 13786 uzindi 14005 seqcl2 14043 seqfveq2 14047 monoord 14055 sermono 14057 seqsplit 14058 seqf1olem2 14065 seqid2 14071 seqhomo 14072 seqz 14073 bcval5 14341 seqcoll 14487 seqcoll2 14488 swrdval2 14669 pfxres 14702 pfxf 14703 spllen 14777 splfv2a 14779 repswpfx 14808 fsum0diag2 15804 climcndslem2 15871 prodfn0 15915 lcmflefac 16672 pcbc 16925 vdwlem2 17007 vdwlem5 17010 vdwlem6 17011 vdwlem8 17013 prmgaplem1 17074 psgnunilem5 19480 efgsres 19724 efgredleme 19729 efgcpbllemb 19741 imasdsf1olem 24317 volsup 25514 dvn2bss 25889 dvtaylp 26335 wilth 27038 ftalem1 27040 ppisval2 27072 dvdsppwf1o 27153 logfaclbnd 27190 bposlem6 27257 wlkres 29655 fzsplit3 32775 wrdres 32915 pfxf1 32922 swrdrn2 32935 swrdrn3 32936 swrdf1 32937 swrdrndisj 32938 splfv3 32939 pfxchn 32994 cycpmco2f1 33140 cycpmco2rn 33141 cycpmco2lem7 33148 ballotlemsima 34553 ballotlemfrc 34564 ballotlemfrceq 34566 fzssfzo 34576 signstres 34612 fsum2dsub 34644 revpfxsfxrev 35143 swrdrevpfx 35144 pfxwlk 35151 erdszelem7 35224 erdszelem8 35225 poimirlem1 37650 poimirlem2 37651 poimirlem3 37652 poimirlem4 37653 poimirlem7 37656 poimirlem12 37661 poimirlem15 37664 poimirlem16 37665 poimirlem17 37666 poimirlem19 37668 poimirlem20 37669 poimirlem23 37672 poimirlem24 37673 poimirlem25 37674 poimirlem29 37678 poimirlem31 37680 mettrifi 37786 fzsplitnd 42000 aks6d1c2lem4 42145 bcc0 44339 iunincfi 45098 monoordxrv 45488 fmulcl 45590 fmul01lt1lem2 45594 dvnprodlem2 45956 stoweidlem11 46020 stoweidlem17 46026 fourierdlem15 46131 ssfz12 47323 smonoord 47365 |
| Copyright terms: Public domain | W3C validator |