Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfzuz3 | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzuz3 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuzb 12995 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
2 | 1 | simprbi 500 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2114 ‘cfv 6340 (class class class)co 7173 ℤ≥cuz 12327 ...cfz 12984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pr 5297 ax-un 7482 ax-cnex 10674 ax-resscn 10675 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-fv 6348 df-ov 7176 df-oprab 7177 df-mpo 7178 df-1st 7717 df-2nd 7718 df-neg 10954 df-z 12066 df-uz 12328 df-fz 12985 |
This theorem is referenced by: elfzel2 12999 elfzle2 13005 peano2fzr 13014 fzsplit2 13026 fzsplit 13027 fznn0sub 13033 fzopth 13038 fzss1 13040 fzss2 13041 fzp1elp1 13054 predfz 13126 fzosplit 13164 fzoend 13222 fzofzp1b 13229 uzindi 13444 seqcl2 13483 seqfveq2 13487 monoord 13495 sermono 13497 seqsplit 13498 seqf1olem2 13505 seqid2 13511 seqhomo 13512 seqz 13513 bcval5 13773 seqcoll 13919 seqcoll2 13920 swrdval2 14100 pfxres 14133 pfxf 14134 spllen 14208 splfv2a 14210 repswpfx 14239 fsum0diag2 15234 climcndslem2 15301 prodfn0 15345 lcmflefac 16092 pcbc 16339 vdwlem2 16421 vdwlem5 16424 vdwlem6 16425 vdwlem8 16427 prmgaplem1 16488 psgnunilem5 18743 efgsres 18985 efgredleme 18990 efgcpbllemb 19002 imasdsf1olem 23129 volsup 24311 dvn2bss 24685 dvtaylp 25120 wilth 25811 ftalem1 25813 ppisval2 25845 dvdsppwf1o 25926 logfaclbnd 25961 bposlem6 26028 wlkres 27615 fzsplit3 30693 wrdres 30789 pfxf1 30794 swrdrn2 30804 swrdrn3 30805 swrdf1 30806 swrdrndisj 30807 splfv3 30808 cycpmco2f1 30971 cycpmco2rn 30972 cycpmco2lem7 30979 ballotlemsima 32055 ballotlemfrc 32066 ballotlemfrceq 32068 fzssfzo 32091 signstres 32127 fsum2dsub 32160 revpfxsfxrev 32651 swrdrevpfx 32652 pfxwlk 32659 erdszelem7 32733 erdszelem8 32734 poimirlem1 35424 poimirlem2 35425 poimirlem3 35426 poimirlem4 35427 poimirlem7 35430 poimirlem12 35435 poimirlem15 35438 poimirlem16 35439 poimirlem17 35440 poimirlem19 35442 poimirlem20 35443 poimirlem23 35446 poimirlem24 35447 poimirlem25 35448 poimirlem29 35452 poimirlem31 35454 mettrifi 35561 fzsplitnd 39634 bcc0 41519 iunincfi 42205 monoordxrv 42585 fmulcl 42687 fmul01lt1lem2 42691 dvnprodlem2 43053 stoweidlem11 43117 stoweidlem17 43123 fourierdlem15 43228 ssfz12 44370 smonoord 44387 |
Copyright terms: Public domain | W3C validator |