| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzuz3 | Structured version Visualization version GIF version | ||
| Description: Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzuz3 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuzb 13455 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 ℤ≥cuz 12769 ...cfz 13444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-neg 11384 df-z 12506 df-uz 12770 df-fz 13445 |
| This theorem is referenced by: elfzel2 13459 elfzle2 13465 peano2fzr 13474 fzsplit2 13486 fzsplit 13487 fznn0sub 13493 fzopth 13498 fzss1 13500 fzss2 13501 fzp1elp1 13514 predfz 13590 fzosplit 13629 fzoend 13694 fzofzp1b 13702 uzindi 13923 seqcl2 13961 seqfveq2 13965 monoord 13973 sermono 13975 seqsplit 13976 seqf1olem2 13983 seqid2 13989 seqhomo 13990 seqz 13991 bcval5 14259 seqcoll 14405 seqcoll2 14406 swrdval2 14587 pfxres 14620 pfxf 14621 spllen 14695 splfv2a 14697 repswpfx 14726 fsum0diag2 15725 climcndslem2 15792 prodfn0 15836 lcmflefac 16594 pcbc 16847 vdwlem2 16929 vdwlem5 16932 vdwlem6 16933 vdwlem8 16935 prmgaplem1 16996 psgnunilem5 19408 efgsres 19652 efgredleme 19657 efgcpbllemb 19669 imasdsf1olem 24294 volsup 25490 dvn2bss 25865 dvtaylp 26311 wilth 27014 ftalem1 27016 ppisval2 27048 dvdsppwf1o 27129 logfaclbnd 27166 bposlem6 27233 wlkres 29649 fzsplit3 32766 wrdres 32906 pfxf1 32913 swrdrn2 32926 swrdrn3 32927 swrdf1 32928 swrdrndisj 32929 splfv3 32930 pfxchn 32981 cycpmco2f1 33096 cycpmco2rn 33097 cycpmco2lem7 33104 ballotlemsima 34500 ballotlemfrc 34511 ballotlemfrceq 34513 fzssfzo 34523 signstres 34559 fsum2dsub 34591 revpfxsfxrev 35096 swrdrevpfx 35097 pfxwlk 35104 erdszelem7 35177 erdszelem8 35178 poimirlem1 37608 poimirlem2 37609 poimirlem3 37610 poimirlem4 37611 poimirlem7 37614 poimirlem12 37619 poimirlem15 37622 poimirlem16 37623 poimirlem17 37624 poimirlem19 37626 poimirlem20 37627 poimirlem23 37630 poimirlem24 37631 poimirlem25 37632 poimirlem29 37636 poimirlem31 37638 mettrifi 37744 fzsplitnd 41963 aks6d1c2lem4 42108 bcc0 44322 iunincfi 45081 monoordxrv 45470 fmulcl 45572 fmul01lt1lem2 45576 dvnprodlem2 45938 stoweidlem11 46002 stoweidlem17 46008 fourierdlem15 46113 ssfz12 47308 smonoord 47365 |
| Copyright terms: Public domain | W3C validator |