![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzuz3 | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzuz3 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuzb 13555 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 ℤ≥cuz 12876 ...cfz 13544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-neg 11493 df-z 12612 df-uz 12877 df-fz 13545 |
This theorem is referenced by: elfzel2 13559 elfzle2 13565 peano2fzr 13574 fzsplit2 13586 fzsplit 13587 fznn0sub 13593 fzopth 13598 fzss1 13600 fzss2 13601 fzp1elp1 13614 predfz 13690 fzosplit 13729 fzoend 13793 fzofzp1b 13801 uzindi 14020 seqcl2 14058 seqfveq2 14062 monoord 14070 sermono 14072 seqsplit 14073 seqf1olem2 14080 seqid2 14086 seqhomo 14087 seqz 14088 bcval5 14354 seqcoll 14500 seqcoll2 14501 swrdval2 14681 pfxres 14714 pfxf 14715 spllen 14789 splfv2a 14791 repswpfx 14820 fsum0diag2 15816 climcndslem2 15883 prodfn0 15927 lcmflefac 16682 pcbc 16934 vdwlem2 17016 vdwlem5 17019 vdwlem6 17020 vdwlem8 17022 prmgaplem1 17083 psgnunilem5 19527 efgsres 19771 efgredleme 19776 efgcpbllemb 19788 imasdsf1olem 24399 volsup 25605 dvn2bss 25981 dvtaylp 26427 wilth 27129 ftalem1 27131 ppisval2 27163 dvdsppwf1o 27244 logfaclbnd 27281 bposlem6 27348 wlkres 29703 fzsplit3 32802 wrdres 32904 pfxf1 32911 swrdrn2 32924 swrdrn3 32925 swrdf1 32926 swrdrndisj 32927 splfv3 32928 pfxchn 32984 cycpmco2f1 33127 cycpmco2rn 33128 cycpmco2lem7 33135 ballotlemsima 34497 ballotlemfrc 34508 ballotlemfrceq 34510 fzssfzo 34533 signstres 34569 fsum2dsub 34601 revpfxsfxrev 35100 swrdrevpfx 35101 pfxwlk 35108 erdszelem7 35182 erdszelem8 35183 poimirlem1 37608 poimirlem2 37609 poimirlem3 37610 poimirlem4 37611 poimirlem7 37614 poimirlem12 37619 poimirlem15 37622 poimirlem16 37623 poimirlem17 37624 poimirlem19 37626 poimirlem20 37627 poimirlem23 37630 poimirlem24 37631 poimirlem25 37632 poimirlem29 37636 poimirlem31 37638 mettrifi 37744 fzsplitnd 41964 aks6d1c2lem4 42109 bcc0 44336 iunincfi 45034 monoordxrv 45432 fmulcl 45537 fmul01lt1lem2 45541 dvnprodlem2 45903 stoweidlem11 45967 stoweidlem17 45973 fourierdlem15 46078 ssfz12 47264 smonoord 47296 |
Copyright terms: Public domain | W3C validator |