![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzuz3 | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzuz3 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuzb 13578 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 ℤ≥cuz 12903 ...cfz 13567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-neg 11523 df-z 12640 df-uz 12904 df-fz 13568 |
This theorem is referenced by: elfzel2 13582 elfzle2 13588 peano2fzr 13597 fzsplit2 13609 fzsplit 13610 fznn0sub 13616 fzopth 13621 fzss1 13623 fzss2 13624 fzp1elp1 13637 predfz 13710 fzosplit 13749 fzoend 13807 fzofzp1b 13815 uzindi 14033 seqcl2 14071 seqfveq2 14075 monoord 14083 sermono 14085 seqsplit 14086 seqf1olem2 14093 seqid2 14099 seqhomo 14100 seqz 14101 bcval5 14367 seqcoll 14513 seqcoll2 14514 swrdval2 14694 pfxres 14727 pfxf 14728 spllen 14802 splfv2a 14804 repswpfx 14833 fsum0diag2 15831 climcndslem2 15898 prodfn0 15942 lcmflefac 16695 pcbc 16947 vdwlem2 17029 vdwlem5 17032 vdwlem6 17033 vdwlem8 17035 prmgaplem1 17096 psgnunilem5 19536 efgsres 19780 efgredleme 19785 efgcpbllemb 19797 imasdsf1olem 24404 volsup 25610 dvn2bss 25986 dvtaylp 26430 wilth 27132 ftalem1 27134 ppisval2 27166 dvdsppwf1o 27247 logfaclbnd 27284 bposlem6 27351 wlkres 29706 fzsplit3 32799 wrdres 32901 pfxf1 32908 swrdrn2 32921 swrdrn3 32922 swrdf1 32923 swrdrndisj 32924 splfv3 32925 pfxchn 32982 cycpmco2f1 33117 cycpmco2rn 33118 cycpmco2lem7 33125 ballotlemsima 34480 ballotlemfrc 34491 ballotlemfrceq 34493 fzssfzo 34516 signstres 34552 fsum2dsub 34584 revpfxsfxrev 35083 swrdrevpfx 35084 pfxwlk 35091 erdszelem7 35165 erdszelem8 35166 poimirlem1 37581 poimirlem2 37582 poimirlem3 37583 poimirlem4 37584 poimirlem7 37587 poimirlem12 37592 poimirlem15 37595 poimirlem16 37596 poimirlem17 37597 poimirlem19 37599 poimirlem20 37600 poimirlem23 37603 poimirlem24 37604 poimirlem25 37605 poimirlem29 37609 poimirlem31 37611 mettrifi 37717 fzsplitnd 41939 aks6d1c2lem4 42084 bcc0 44309 iunincfi 44996 monoordxrv 45397 fmulcl 45502 fmul01lt1lem2 45506 dvnprodlem2 45868 stoweidlem11 45932 stoweidlem17 45938 fourierdlem15 46043 ssfz12 47229 smonoord 47245 |
Copyright terms: Public domain | W3C validator |