![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzuz3 | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzuz3 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuzb 13500 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ‘cfv 6543 (class class class)co 7412 ℤ≥cuz 12827 ...cfz 13489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7978 df-2nd 7979 df-neg 11452 df-z 12564 df-uz 12828 df-fz 13490 |
This theorem is referenced by: elfzel2 13504 elfzle2 13510 peano2fzr 13519 fzsplit2 13531 fzsplit 13532 fznn0sub 13538 fzopth 13543 fzss1 13545 fzss2 13546 fzp1elp1 13559 predfz 13631 fzosplit 13670 fzoend 13728 fzofzp1b 13735 uzindi 13952 seqcl2 13991 seqfveq2 13995 monoord 14003 sermono 14005 seqsplit 14006 seqf1olem2 14013 seqid2 14019 seqhomo 14020 seqz 14021 bcval5 14283 seqcoll 14430 seqcoll2 14431 swrdval2 14601 pfxres 14634 pfxf 14635 spllen 14709 splfv2a 14711 repswpfx 14740 fsum0diag2 15734 climcndslem2 15801 prodfn0 15845 lcmflefac 16590 pcbc 16838 vdwlem2 16920 vdwlem5 16923 vdwlem6 16924 vdwlem8 16926 prmgaplem1 16987 psgnunilem5 19404 efgsres 19648 efgredleme 19653 efgcpbllemb 19665 imasdsf1olem 24100 volsup 25306 dvn2bss 25681 dvtaylp 26119 wilth 26812 ftalem1 26814 ppisval2 26846 dvdsppwf1o 26927 logfaclbnd 26962 bposlem6 27029 wlkres 29195 fzsplit3 32273 wrdres 32371 pfxf1 32376 swrdrn2 32386 swrdrn3 32387 swrdf1 32388 swrdrndisj 32389 splfv3 32390 cycpmco2f1 32554 cycpmco2rn 32555 cycpmco2lem7 32562 ballotlemsima 33813 ballotlemfrc 33824 ballotlemfrceq 33826 fzssfzo 33849 signstres 33885 fsum2dsub 33918 revpfxsfxrev 34405 swrdrevpfx 34406 pfxwlk 34413 erdszelem7 34487 erdszelem8 34488 poimirlem1 36793 poimirlem2 36794 poimirlem3 36795 poimirlem4 36796 poimirlem7 36799 poimirlem12 36804 poimirlem15 36807 poimirlem16 36808 poimirlem17 36809 poimirlem19 36811 poimirlem20 36812 poimirlem23 36815 poimirlem24 36816 poimirlem25 36817 poimirlem29 36821 poimirlem31 36823 mettrifi 36929 fzsplitnd 41155 bcc0 43402 iunincfi 44085 monoordxrv 44491 fmulcl 44596 fmul01lt1lem2 44600 dvnprodlem2 44962 stoweidlem11 45026 stoweidlem17 45032 fourierdlem15 45137 ssfz12 46321 smonoord 46338 |
Copyright terms: Public domain | W3C validator |