Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfzuz3 | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzuz3 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuzb 13179 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ℤ≥cuz 12511 ...cfz 13168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-neg 11138 df-z 12250 df-uz 12512 df-fz 13169 |
This theorem is referenced by: elfzel2 13183 elfzle2 13189 peano2fzr 13198 fzsplit2 13210 fzsplit 13211 fznn0sub 13217 fzopth 13222 fzss1 13224 fzss2 13225 fzp1elp1 13238 predfz 13310 fzosplit 13348 fzoend 13406 fzofzp1b 13413 uzindi 13630 seqcl2 13669 seqfveq2 13673 monoord 13681 sermono 13683 seqsplit 13684 seqf1olem2 13691 seqid2 13697 seqhomo 13698 seqz 13699 bcval5 13960 seqcoll 14106 seqcoll2 14107 swrdval2 14287 pfxres 14320 pfxf 14321 spllen 14395 splfv2a 14397 repswpfx 14426 fsum0diag2 15423 climcndslem2 15490 prodfn0 15534 lcmflefac 16281 pcbc 16529 vdwlem2 16611 vdwlem5 16614 vdwlem6 16615 vdwlem8 16617 prmgaplem1 16678 psgnunilem5 19017 efgsres 19259 efgredleme 19264 efgcpbllemb 19276 imasdsf1olem 23434 volsup 24625 dvn2bss 24999 dvtaylp 25434 wilth 26125 ftalem1 26127 ppisval2 26159 dvdsppwf1o 26240 logfaclbnd 26275 bposlem6 26342 wlkres 27940 fzsplit3 31017 wrdres 31113 pfxf1 31118 swrdrn2 31128 swrdrn3 31129 swrdf1 31130 swrdrndisj 31131 splfv3 31132 cycpmco2f1 31293 cycpmco2rn 31294 cycpmco2lem7 31301 ballotlemsima 32382 ballotlemfrc 32393 ballotlemfrceq 32395 fzssfzo 32418 signstres 32454 fsum2dsub 32487 revpfxsfxrev 32977 swrdrevpfx 32978 pfxwlk 32985 erdszelem7 33059 erdszelem8 33060 poimirlem1 35705 poimirlem2 35706 poimirlem3 35707 poimirlem4 35708 poimirlem7 35711 poimirlem12 35716 poimirlem15 35719 poimirlem16 35720 poimirlem17 35721 poimirlem19 35723 poimirlem20 35724 poimirlem23 35727 poimirlem24 35728 poimirlem25 35729 poimirlem29 35733 poimirlem31 35735 mettrifi 35842 fzsplitnd 39919 bcc0 41847 iunincfi 42533 monoordxrv 42912 fmulcl 43012 fmul01lt1lem2 43016 dvnprodlem2 43378 stoweidlem11 43442 stoweidlem17 43448 fourierdlem15 43553 ssfz12 44694 smonoord 44711 |
Copyright terms: Public domain | W3C validator |