| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzuz3 | Structured version Visualization version GIF version | ||
| Description: Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzuz3 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuzb 13418 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 ℤ≥cuz 12732 ...cfz 13407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-neg 11347 df-z 12469 df-uz 12733 df-fz 13408 |
| This theorem is referenced by: elfzel2 13422 elfzle2 13428 peano2fzr 13437 fzsplit2 13449 fzsplit 13450 fznn0sub 13456 fzopth 13461 fzss1 13463 fzss2 13464 fzp1elp1 13477 predfz 13553 fzosplit 13592 fzoend 13657 fzofzp1b 13665 uzindi 13889 seqcl2 13927 seqfveq2 13931 monoord 13939 sermono 13941 seqsplit 13942 seqf1olem2 13949 seqid2 13955 seqhomo 13956 seqz 13957 bcval5 14225 seqcoll 14371 seqcoll2 14372 swrdval2 14554 pfxres 14587 pfxf 14588 spllen 14661 splfv2a 14663 repswpfx 14692 fsum0diag2 15690 climcndslem2 15757 prodfn0 15801 lcmflefac 16559 pcbc 16812 vdwlem2 16894 vdwlem5 16897 vdwlem6 16898 vdwlem8 16900 prmgaplem1 16961 pfxchn 18516 psgnunilem5 19406 efgsres 19650 efgredleme 19655 efgcpbllemb 19667 imasdsf1olem 24288 volsup 25484 dvn2bss 25859 dvtaylp 26305 wilth 27008 ftalem1 27010 ppisval2 27042 dvdsppwf1o 27123 logfaclbnd 27160 bposlem6 27227 wlkres 29647 fzsplit3 32776 wrdres 32916 pfxf1 32923 swrdrn2 32935 swrdrn3 32936 swrdf1 32937 swrdrndisj 32938 splfv3 32939 cycpmco2f1 33093 cycpmco2rn 33094 cycpmco2lem7 33101 ballotlemsima 34529 ballotlemfrc 34540 ballotlemfrceq 34542 fzssfzo 34552 signstres 34588 fsum2dsub 34620 revpfxsfxrev 35160 swrdrevpfx 35161 pfxwlk 35168 erdszelem7 35241 erdszelem8 35242 poimirlem1 37660 poimirlem2 37661 poimirlem3 37662 poimirlem4 37663 poimirlem7 37666 poimirlem12 37671 poimirlem15 37674 poimirlem16 37675 poimirlem17 37676 poimirlem19 37678 poimirlem20 37679 poimirlem23 37682 poimirlem24 37683 poimirlem25 37684 poimirlem29 37688 poimirlem31 37690 mettrifi 37796 fzsplitnd 42074 aks6d1c2lem4 42219 bcc0 44432 iunincfi 45190 monoordxrv 45578 fmulcl 45680 fmul01lt1lem2 45684 dvnprodlem2 46044 stoweidlem11 46108 stoweidlem17 46114 fourierdlem15 46219 ssfz12 47413 smonoord 47470 |
| Copyright terms: Public domain | W3C validator |