| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzuz3 | Structured version Visualization version GIF version | ||
| Description: Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzuz3 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuzb 13479 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 ℤ≥cuz 12793 ...cfz 13468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-neg 11408 df-z 12530 df-uz 12794 df-fz 13469 |
| This theorem is referenced by: elfzel2 13483 elfzle2 13489 peano2fzr 13498 fzsplit2 13510 fzsplit 13511 fznn0sub 13517 fzopth 13522 fzss1 13524 fzss2 13525 fzp1elp1 13538 predfz 13614 fzosplit 13653 fzoend 13718 fzofzp1b 13726 uzindi 13947 seqcl2 13985 seqfveq2 13989 monoord 13997 sermono 13999 seqsplit 14000 seqf1olem2 14007 seqid2 14013 seqhomo 14014 seqz 14015 bcval5 14283 seqcoll 14429 seqcoll2 14430 swrdval2 14611 pfxres 14644 pfxf 14645 spllen 14719 splfv2a 14721 repswpfx 14750 fsum0diag2 15749 climcndslem2 15816 prodfn0 15860 lcmflefac 16618 pcbc 16871 vdwlem2 16953 vdwlem5 16956 vdwlem6 16957 vdwlem8 16959 prmgaplem1 17020 psgnunilem5 19424 efgsres 19668 efgredleme 19673 efgcpbllemb 19685 imasdsf1olem 24261 volsup 25457 dvn2bss 25832 dvtaylp 26278 wilth 26981 ftalem1 26983 ppisval2 27015 dvdsppwf1o 27096 logfaclbnd 27133 bposlem6 27200 wlkres 29598 fzsplit3 32716 wrdres 32856 pfxf1 32863 swrdrn2 32876 swrdrn3 32877 swrdf1 32878 swrdrndisj 32879 splfv3 32880 pfxchn 32935 cycpmco2f1 33081 cycpmco2rn 33082 cycpmco2lem7 33089 ballotlemsima 34507 ballotlemfrc 34518 ballotlemfrceq 34520 fzssfzo 34530 signstres 34566 fsum2dsub 34598 revpfxsfxrev 35103 swrdrevpfx 35104 pfxwlk 35111 erdszelem7 35184 erdszelem8 35185 poimirlem1 37615 poimirlem2 37616 poimirlem3 37617 poimirlem4 37618 poimirlem7 37621 poimirlem12 37626 poimirlem15 37629 poimirlem16 37630 poimirlem17 37631 poimirlem19 37633 poimirlem20 37634 poimirlem23 37637 poimirlem24 37638 poimirlem25 37639 poimirlem29 37643 poimirlem31 37645 mettrifi 37751 fzsplitnd 41970 aks6d1c2lem4 42115 bcc0 44329 iunincfi 45088 monoordxrv 45477 fmulcl 45579 fmul01lt1lem2 45583 dvnprodlem2 45945 stoweidlem11 46009 stoweidlem17 46015 fourierdlem15 46120 ssfz12 47315 smonoord 47372 |
| Copyright terms: Public domain | W3C validator |