![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzuz3 | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzuz3 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuzb 13502 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ‘cfv 6543 (class class class)co 7412 ℤ≥cuz 12829 ...cfz 13491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-neg 11454 df-z 12566 df-uz 12830 df-fz 13492 |
This theorem is referenced by: elfzel2 13506 elfzle2 13512 peano2fzr 13521 fzsplit2 13533 fzsplit 13534 fznn0sub 13540 fzopth 13545 fzss1 13547 fzss2 13548 fzp1elp1 13561 predfz 13633 fzosplit 13672 fzoend 13730 fzofzp1b 13737 uzindi 13954 seqcl2 13993 seqfveq2 13997 monoord 14005 sermono 14007 seqsplit 14008 seqf1olem2 14015 seqid2 14021 seqhomo 14022 seqz 14023 bcval5 14285 seqcoll 14432 seqcoll2 14433 swrdval2 14603 pfxres 14636 pfxf 14637 spllen 14711 splfv2a 14713 repswpfx 14742 fsum0diag2 15736 climcndslem2 15803 prodfn0 15847 lcmflefac 16592 pcbc 16840 vdwlem2 16922 vdwlem5 16925 vdwlem6 16926 vdwlem8 16928 prmgaplem1 16989 psgnunilem5 19410 efgsres 19654 efgredleme 19659 efgcpbllemb 19671 imasdsf1olem 24199 volsup 25405 dvn2bss 25780 dvtaylp 26221 wilth 26917 ftalem1 26919 ppisval2 26951 dvdsppwf1o 27032 logfaclbnd 27069 bposlem6 27136 wlkres 29361 fzsplit3 32439 wrdres 32537 pfxf1 32542 swrdrn2 32552 swrdrn3 32553 swrdf1 32554 swrdrndisj 32555 splfv3 32556 cycpmco2f1 32720 cycpmco2rn 32721 cycpmco2lem7 32728 ballotlemsima 33979 ballotlemfrc 33990 ballotlemfrceq 33992 fzssfzo 34015 signstres 34051 fsum2dsub 34084 revpfxsfxrev 34571 swrdrevpfx 34572 pfxwlk 34579 erdszelem7 34653 erdszelem8 34654 poimirlem1 36955 poimirlem2 36956 poimirlem3 36957 poimirlem4 36958 poimirlem7 36961 poimirlem12 36966 poimirlem15 36969 poimirlem16 36970 poimirlem17 36971 poimirlem19 36973 poimirlem20 36974 poimirlem23 36977 poimirlem24 36978 poimirlem25 36979 poimirlem29 36983 poimirlem31 36985 mettrifi 37091 fzsplitnd 41317 bcc0 43564 iunincfi 44247 monoordxrv 44653 fmulcl 44758 fmul01lt1lem2 44762 dvnprodlem2 45124 stoweidlem11 45188 stoweidlem17 45194 fourierdlem15 45299 ssfz12 46483 smonoord 46500 |
Copyright terms: Public domain | W3C validator |