| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzuz3 | Structured version Visualization version GIF version | ||
| Description: Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzuz3 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuzb 13421 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 ℤ≥cuz 12735 ...cfz 13410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-neg 11350 df-z 12472 df-uz 12736 df-fz 13411 |
| This theorem is referenced by: elfzel2 13425 elfzle2 13431 peano2fzr 13440 fzsplit2 13452 fzsplit 13453 fznn0sub 13459 fzopth 13464 fzss1 13466 fzss2 13467 fzp1elp1 13480 predfz 13556 fzosplit 13595 fzoend 13660 fzofzp1b 13668 uzindi 13889 seqcl2 13927 seqfveq2 13931 monoord 13939 sermono 13941 seqsplit 13942 seqf1olem2 13949 seqid2 13955 seqhomo 13956 seqz 13957 bcval5 14225 seqcoll 14371 seqcoll2 14372 swrdval2 14553 pfxres 14586 pfxf 14587 spllen 14660 splfv2a 14662 repswpfx 14691 fsum0diag2 15690 climcndslem2 15757 prodfn0 15801 lcmflefac 16559 pcbc 16812 vdwlem2 16894 vdwlem5 16897 vdwlem6 16898 vdwlem8 16900 prmgaplem1 16961 psgnunilem5 19373 efgsres 19617 efgredleme 19622 efgcpbllemb 19634 imasdsf1olem 24259 volsup 25455 dvn2bss 25830 dvtaylp 26276 wilth 26979 ftalem1 26981 ppisval2 27013 dvdsppwf1o 27094 logfaclbnd 27131 bposlem6 27198 wlkres 29614 fzsplit3 32737 wrdres 32877 pfxf1 32884 swrdrn2 32897 swrdrn3 32898 swrdf1 32899 swrdrndisj 32900 splfv3 32901 pfxchn 32952 cycpmco2f1 33067 cycpmco2rn 33068 cycpmco2lem7 33075 ballotlemsima 34490 ballotlemfrc 34501 ballotlemfrceq 34503 fzssfzo 34513 signstres 34549 fsum2dsub 34581 revpfxsfxrev 35099 swrdrevpfx 35100 pfxwlk 35107 erdszelem7 35180 erdszelem8 35181 poimirlem1 37611 poimirlem2 37612 poimirlem3 37613 poimirlem4 37614 poimirlem7 37617 poimirlem12 37622 poimirlem15 37625 poimirlem16 37626 poimirlem17 37627 poimirlem19 37629 poimirlem20 37630 poimirlem23 37633 poimirlem24 37634 poimirlem25 37635 poimirlem29 37639 poimirlem31 37641 mettrifi 37747 fzsplitnd 41965 aks6d1c2lem4 42110 bcc0 44323 iunincfi 45082 monoordxrv 45470 fmulcl 45572 fmul01lt1lem2 45576 dvnprodlem2 45938 stoweidlem11 46002 stoweidlem17 46008 fourierdlem15 46113 ssfz12 47308 smonoord 47365 |
| Copyright terms: Public domain | W3C validator |