MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmsub Structured version   Visualization version   GIF version

Theorem ghmsub 18757
Description: Linearity of subtraction through a group homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmsub.b 𝐵 = (Base‘𝑆)
ghmsub.m = (-g𝑆)
ghmsub.n 𝑁 = (-g𝑇)
Assertion
Ref Expression
ghmsub ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈 𝑉)) = ((𝐹𝑈)𝑁(𝐹𝑉)))

Proof of Theorem ghmsub
StepHypRef Expression
1 ghmgrp1 18751 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
213ad2ant1 1131 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝑆 ∈ Grp)
3 simp3 1136 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝑉𝐵)
4 ghmsub.b . . . . . 6 𝐵 = (Base‘𝑆)
5 eqid 2738 . . . . . 6 (invg𝑆) = (invg𝑆)
64, 5grpinvcl 18542 . . . . 5 ((𝑆 ∈ Grp ∧ 𝑉𝐵) → ((invg𝑆)‘𝑉) ∈ 𝐵)
72, 3, 6syl2anc 583 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((invg𝑆)‘𝑉) ∈ 𝐵)
8 eqid 2738 . . . . 5 (+g𝑆) = (+g𝑆)
9 eqid 2738 . . . . 5 (+g𝑇) = (+g𝑇)
104, 8, 9ghmlin 18754 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵 ∧ ((invg𝑆)‘𝑉) ∈ 𝐵) → (𝐹‘(𝑈(+g𝑆)((invg𝑆)‘𝑉))) = ((𝐹𝑈)(+g𝑇)(𝐹‘((invg𝑆)‘𝑉))))
117, 10syld3an3 1407 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈(+g𝑆)((invg𝑆)‘𝑉))) = ((𝐹𝑈)(+g𝑇)(𝐹‘((invg𝑆)‘𝑉))))
12 eqid 2738 . . . . . 6 (invg𝑇) = (invg𝑇)
134, 5, 12ghminv 18756 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉𝐵) → (𝐹‘((invg𝑆)‘𝑉)) = ((invg𝑇)‘(𝐹𝑉)))
14133adant2 1129 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘((invg𝑆)‘𝑉)) = ((invg𝑇)‘(𝐹𝑉)))
1514oveq2d 7271 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹𝑈)(+g𝑇)(𝐹‘((invg𝑆)‘𝑉))) = ((𝐹𝑈)(+g𝑇)((invg𝑇)‘(𝐹𝑉))))
1611, 15eqtrd 2778 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈(+g𝑆)((invg𝑆)‘𝑉))) = ((𝐹𝑈)(+g𝑇)((invg𝑇)‘(𝐹𝑉))))
17 ghmsub.m . . . . 5 = (-g𝑆)
184, 8, 5, 17grpsubval 18540 . . . 4 ((𝑈𝐵𝑉𝐵) → (𝑈 𝑉) = (𝑈(+g𝑆)((invg𝑆)‘𝑉)))
1918fveq2d 6760 . . 3 ((𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈 𝑉)) = (𝐹‘(𝑈(+g𝑆)((invg𝑆)‘𝑉))))
20193adant1 1128 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈 𝑉)) = (𝐹‘(𝑈(+g𝑆)((invg𝑆)‘𝑉))))
21 eqid 2738 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
224, 21ghmf 18753 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝐵⟶(Base‘𝑇))
23 ffvelrn 6941 . . . . . 6 ((𝐹:𝐵⟶(Base‘𝑇) ∧ 𝑈𝐵) → (𝐹𝑈) ∈ (Base‘𝑇))
24 ffvelrn 6941 . . . . . 6 ((𝐹:𝐵⟶(Base‘𝑇) ∧ 𝑉𝐵) → (𝐹𝑉) ∈ (Base‘𝑇))
2523, 24anim12dan 618 . . . . 5 ((𝐹:𝐵⟶(Base‘𝑇) ∧ (𝑈𝐵𝑉𝐵)) → ((𝐹𝑈) ∈ (Base‘𝑇) ∧ (𝐹𝑉) ∈ (Base‘𝑇)))
2622, 25sylan 579 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑈𝐵𝑉𝐵)) → ((𝐹𝑈) ∈ (Base‘𝑇) ∧ (𝐹𝑉) ∈ (Base‘𝑇)))
27263impb 1113 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹𝑈) ∈ (Base‘𝑇) ∧ (𝐹𝑉) ∈ (Base‘𝑇)))
28 ghmsub.n . . . 4 𝑁 = (-g𝑇)
2921, 9, 12, 28grpsubval 18540 . . 3 (((𝐹𝑈) ∈ (Base‘𝑇) ∧ (𝐹𝑉) ∈ (Base‘𝑇)) → ((𝐹𝑈)𝑁(𝐹𝑉)) = ((𝐹𝑈)(+g𝑇)((invg𝑇)‘(𝐹𝑉))))
3027, 29syl 17 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹𝑈)𝑁(𝐹𝑉)) = ((𝐹𝑈)(+g𝑇)((invg𝑇)‘(𝐹𝑉))))
3116, 20, 303eqtr4d 2788 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈 𝑉)) = ((𝐹𝑈)𝑁(𝐹𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Grpcgrp 18492  invgcminusg 18493  -gcsg 18494   GrpHom cghm 18746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-ghm 18747
This theorem is referenced by:  ghmnsgima  18773  ghmnsgpreima  18774  ghmeqker  18776  ghmf1  18778  evl1subd  21418  ghmcnp  23174  nmods  23814  znfermltl  31464  qqhucn  31842
  Copyright terms: Public domain W3C validator