MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmsub Structured version   Visualization version   GIF version

Theorem ghmsub 18842
Description: Linearity of subtraction through a group homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmsub.b 𝐵 = (Base‘𝑆)
ghmsub.m = (-g𝑆)
ghmsub.n 𝑁 = (-g𝑇)
Assertion
Ref Expression
ghmsub ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈 𝑉)) = ((𝐹𝑈)𝑁(𝐹𝑉)))

Proof of Theorem ghmsub
StepHypRef Expression
1 ghmgrp1 18836 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
213ad2ant1 1132 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝑆 ∈ Grp)
3 simp3 1137 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝑉𝐵)
4 ghmsub.b . . . . . 6 𝐵 = (Base‘𝑆)
5 eqid 2738 . . . . . 6 (invg𝑆) = (invg𝑆)
64, 5grpinvcl 18627 . . . . 5 ((𝑆 ∈ Grp ∧ 𝑉𝐵) → ((invg𝑆)‘𝑉) ∈ 𝐵)
72, 3, 6syl2anc 584 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((invg𝑆)‘𝑉) ∈ 𝐵)
8 eqid 2738 . . . . 5 (+g𝑆) = (+g𝑆)
9 eqid 2738 . . . . 5 (+g𝑇) = (+g𝑇)
104, 8, 9ghmlin 18839 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵 ∧ ((invg𝑆)‘𝑉) ∈ 𝐵) → (𝐹‘(𝑈(+g𝑆)((invg𝑆)‘𝑉))) = ((𝐹𝑈)(+g𝑇)(𝐹‘((invg𝑆)‘𝑉))))
117, 10syld3an3 1408 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈(+g𝑆)((invg𝑆)‘𝑉))) = ((𝐹𝑈)(+g𝑇)(𝐹‘((invg𝑆)‘𝑉))))
12 eqid 2738 . . . . . 6 (invg𝑇) = (invg𝑇)
134, 5, 12ghminv 18841 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉𝐵) → (𝐹‘((invg𝑆)‘𝑉)) = ((invg𝑇)‘(𝐹𝑉)))
14133adant2 1130 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘((invg𝑆)‘𝑉)) = ((invg𝑇)‘(𝐹𝑉)))
1514oveq2d 7291 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹𝑈)(+g𝑇)(𝐹‘((invg𝑆)‘𝑉))) = ((𝐹𝑈)(+g𝑇)((invg𝑇)‘(𝐹𝑉))))
1611, 15eqtrd 2778 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈(+g𝑆)((invg𝑆)‘𝑉))) = ((𝐹𝑈)(+g𝑇)((invg𝑇)‘(𝐹𝑉))))
17 ghmsub.m . . . . 5 = (-g𝑆)
184, 8, 5, 17grpsubval 18625 . . . 4 ((𝑈𝐵𝑉𝐵) → (𝑈 𝑉) = (𝑈(+g𝑆)((invg𝑆)‘𝑉)))
1918fveq2d 6778 . . 3 ((𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈 𝑉)) = (𝐹‘(𝑈(+g𝑆)((invg𝑆)‘𝑉))))
20193adant1 1129 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈 𝑉)) = (𝐹‘(𝑈(+g𝑆)((invg𝑆)‘𝑉))))
21 eqid 2738 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
224, 21ghmf 18838 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝐵⟶(Base‘𝑇))
23 ffvelrn 6959 . . . . . 6 ((𝐹:𝐵⟶(Base‘𝑇) ∧ 𝑈𝐵) → (𝐹𝑈) ∈ (Base‘𝑇))
24 ffvelrn 6959 . . . . . 6 ((𝐹:𝐵⟶(Base‘𝑇) ∧ 𝑉𝐵) → (𝐹𝑉) ∈ (Base‘𝑇))
2523, 24anim12dan 619 . . . . 5 ((𝐹:𝐵⟶(Base‘𝑇) ∧ (𝑈𝐵𝑉𝐵)) → ((𝐹𝑈) ∈ (Base‘𝑇) ∧ (𝐹𝑉) ∈ (Base‘𝑇)))
2622, 25sylan 580 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑈𝐵𝑉𝐵)) → ((𝐹𝑈) ∈ (Base‘𝑇) ∧ (𝐹𝑉) ∈ (Base‘𝑇)))
27263impb 1114 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹𝑈) ∈ (Base‘𝑇) ∧ (𝐹𝑉) ∈ (Base‘𝑇)))
28 ghmsub.n . . . 4 𝑁 = (-g𝑇)
2921, 9, 12, 28grpsubval 18625 . . 3 (((𝐹𝑈) ∈ (Base‘𝑇) ∧ (𝐹𝑉) ∈ (Base‘𝑇)) → ((𝐹𝑈)𝑁(𝐹𝑉)) = ((𝐹𝑈)(+g𝑇)((invg𝑇)‘(𝐹𝑉))))
3027, 29syl 17 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹𝑈)𝑁(𝐹𝑉)) = ((𝐹𝑈)(+g𝑇)((invg𝑇)‘(𝐹𝑉))))
3116, 20, 303eqtr4d 2788 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈 𝑉)) = ((𝐹𝑈)𝑁(𝐹𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Grpcgrp 18577  invgcminusg 18578  -gcsg 18579   GrpHom cghm 18831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-ghm 18832
This theorem is referenced by:  ghmnsgima  18858  ghmnsgpreima  18859  ghmeqker  18861  ghmf1  18863  evl1subd  21508  ghmcnp  23266  nmods  23908  znfermltl  31562  qqhucn  31942
  Copyright terms: Public domain W3C validator