MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmsub Structured version   Visualization version   GIF version

Theorem ghmsub 19163
Description: Linearity of subtraction through a group homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmsub.b 𝐵 = (Base‘𝑆)
ghmsub.m = (-g𝑆)
ghmsub.n 𝑁 = (-g𝑇)
Assertion
Ref Expression
ghmsub ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈 𝑉)) = ((𝐹𝑈)𝑁(𝐹𝑉)))

Proof of Theorem ghmsub
StepHypRef Expression
1 ghmgrp1 19157 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
213ad2ant1 1133 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝑆 ∈ Grp)
3 simp3 1138 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝑉𝐵)
4 ghmsub.b . . . . . 6 𝐵 = (Base‘𝑆)
5 eqid 2730 . . . . . 6 (invg𝑆) = (invg𝑆)
64, 5grpinvcl 18926 . . . . 5 ((𝑆 ∈ Grp ∧ 𝑉𝐵) → ((invg𝑆)‘𝑉) ∈ 𝐵)
72, 3, 6syl2anc 584 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((invg𝑆)‘𝑉) ∈ 𝐵)
8 eqid 2730 . . . . 5 (+g𝑆) = (+g𝑆)
9 eqid 2730 . . . . 5 (+g𝑇) = (+g𝑇)
104, 8, 9ghmlin 19160 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵 ∧ ((invg𝑆)‘𝑉) ∈ 𝐵) → (𝐹‘(𝑈(+g𝑆)((invg𝑆)‘𝑉))) = ((𝐹𝑈)(+g𝑇)(𝐹‘((invg𝑆)‘𝑉))))
117, 10syld3an3 1411 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈(+g𝑆)((invg𝑆)‘𝑉))) = ((𝐹𝑈)(+g𝑇)(𝐹‘((invg𝑆)‘𝑉))))
12 eqid 2730 . . . . . 6 (invg𝑇) = (invg𝑇)
134, 5, 12ghminv 19162 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉𝐵) → (𝐹‘((invg𝑆)‘𝑉)) = ((invg𝑇)‘(𝐹𝑉)))
14133adant2 1131 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘((invg𝑆)‘𝑉)) = ((invg𝑇)‘(𝐹𝑉)))
1514oveq2d 7406 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹𝑈)(+g𝑇)(𝐹‘((invg𝑆)‘𝑉))) = ((𝐹𝑈)(+g𝑇)((invg𝑇)‘(𝐹𝑉))))
1611, 15eqtrd 2765 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈(+g𝑆)((invg𝑆)‘𝑉))) = ((𝐹𝑈)(+g𝑇)((invg𝑇)‘(𝐹𝑉))))
17 ghmsub.m . . . . 5 = (-g𝑆)
184, 8, 5, 17grpsubval 18924 . . . 4 ((𝑈𝐵𝑉𝐵) → (𝑈 𝑉) = (𝑈(+g𝑆)((invg𝑆)‘𝑉)))
1918fveq2d 6865 . . 3 ((𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈 𝑉)) = (𝐹‘(𝑈(+g𝑆)((invg𝑆)‘𝑉))))
20193adant1 1130 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈 𝑉)) = (𝐹‘(𝑈(+g𝑆)((invg𝑆)‘𝑉))))
21 eqid 2730 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
224, 21ghmf 19159 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝐵⟶(Base‘𝑇))
23 ffvelcdm 7056 . . . . . 6 ((𝐹:𝐵⟶(Base‘𝑇) ∧ 𝑈𝐵) → (𝐹𝑈) ∈ (Base‘𝑇))
24 ffvelcdm 7056 . . . . . 6 ((𝐹:𝐵⟶(Base‘𝑇) ∧ 𝑉𝐵) → (𝐹𝑉) ∈ (Base‘𝑇))
2523, 24anim12dan 619 . . . . 5 ((𝐹:𝐵⟶(Base‘𝑇) ∧ (𝑈𝐵𝑉𝐵)) → ((𝐹𝑈) ∈ (Base‘𝑇) ∧ (𝐹𝑉) ∈ (Base‘𝑇)))
2622, 25sylan 580 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑈𝐵𝑉𝐵)) → ((𝐹𝑈) ∈ (Base‘𝑇) ∧ (𝐹𝑉) ∈ (Base‘𝑇)))
27263impb 1114 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹𝑈) ∈ (Base‘𝑇) ∧ (𝐹𝑉) ∈ (Base‘𝑇)))
28 ghmsub.n . . . 4 𝑁 = (-g𝑇)
2921, 9, 12, 28grpsubval 18924 . . 3 (((𝐹𝑈) ∈ (Base‘𝑇) ∧ (𝐹𝑉) ∈ (Base‘𝑇)) → ((𝐹𝑈)𝑁(𝐹𝑉)) = ((𝐹𝑈)(+g𝑇)((invg𝑇)‘(𝐹𝑉))))
3027, 29syl 17 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹𝑈)𝑁(𝐹𝑉)) = ((𝐹𝑈)(+g𝑇)((invg𝑇)‘(𝐹𝑉))))
3116, 20, 303eqtr4d 2775 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈 𝑉)) = ((𝐹𝑈)𝑁(𝐹𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Grpcgrp 18872  invgcminusg 18873  -gcsg 18874   GrpHom cghm 19151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-ghm 19152
This theorem is referenced by:  ghmnsgima  19179  ghmnsgpreima  19180  ghmeqker  19182  ghmf1  19185  fermltlchr  21446  evl1subd  22236  ghmcnp  24009  nmods  24639  znfermltl  33344  qqhucn  33989  aks5lem2  42182
  Copyright terms: Public domain W3C validator