Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnring0gd Structured version   Visualization version   GIF version

Theorem mnring0gd 44338
Description: The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.)
Hypotheses
Ref Expression
mnring0gd.1 𝐹 = (𝑅 MndRing 𝑀)
mnring0gd.2 𝐴 = (Base‘𝑀)
mnring0gd.3 𝑉 = (𝑅 freeLMod 𝐴)
mnring0gd.4 (𝜑𝑅𝑈)
mnring0gd.5 (𝜑𝑀𝑊)
Assertion
Ref Expression
mnring0gd (𝜑 → (0g𝑉) = (0g𝐹))

Proof of Theorem mnring0gd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2734 . 2 (𝜑 → (Base‘𝑉) = (Base‘𝑉))
2 mnring0gd.1 . . 3 𝐹 = (𝑅 MndRing 𝑀)
3 mnring0gd.2 . . 3 𝐴 = (Base‘𝑀)
4 mnring0gd.3 . . 3 𝑉 = (𝑅 freeLMod 𝐴)
5 eqid 2733 . . 3 (Base‘𝑉) = (Base‘𝑉)
6 mnring0gd.4 . . 3 (𝜑𝑅𝑈)
7 mnring0gd.5 . . 3 (𝜑𝑀𝑊)
82, 3, 4, 5, 6, 7mnringbased 44332 . 2 (𝜑 → (Base‘𝑉) = (Base‘𝐹))
92, 3, 4, 6, 7mnringaddgd 44337 . . 3 (𝜑 → (+g𝑉) = (+g𝐹))
109oveqdr 7380 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑉) ∧ 𝑦 ∈ (Base‘𝑉))) → (𝑥(+g𝑉)𝑦) = (𝑥(+g𝐹)𝑦))
111, 8, 10grpidpropd 18572 1 (𝜑 → (0g𝑉) = (0g𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  0gc0g 17345   freeLMod cfrlm 21685   MndRing cmnring 44328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-mulr 17177  df-0g 17347  df-mnring 44329
This theorem is referenced by:  mnring0g2d  44339
  Copyright terms: Public domain W3C validator