Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ply1mpl0 | Structured version Visualization version GIF version |
Description: The univariate polynomial ring has the same zero as the corresponding multivariate polynomial ring. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 3-Oct-2015.) |
Ref | Expression |
---|---|
ply1mpl0.m | ⊢ 𝑀 = (1o mPoly 𝑅) |
ply1mpl0.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1mpl0.z | ⊢ 0 = (0g‘𝑃) |
Ref | Expression |
---|---|
ply1mpl0 | ⊢ 0 = (0g‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1mpl0.z | . 2 ⊢ 0 = (0g‘𝑃) | |
2 | eqidd 2738 | . . . 4 ⊢ (⊤ → (Base‘𝑃) = (Base‘𝑃)) | |
3 | ply1mpl0.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | eqid 2737 | . . . . . . 7 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
5 | eqid 2737 | . . . . . . 7 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
6 | 3, 4, 5 | ply1bas 21471 | . . . . . 6 ⊢ (Base‘𝑃) = (Base‘(1o mPoly 𝑅)) |
7 | ply1mpl0.m | . . . . . . 7 ⊢ 𝑀 = (1o mPoly 𝑅) | |
8 | 7 | fveq2i 6832 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘(1o mPoly 𝑅)) |
9 | 6, 8 | eqtr4i 2768 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑀) |
10 | 9 | a1i 11 | . . . 4 ⊢ (⊤ → (Base‘𝑃) = (Base‘𝑀)) |
11 | eqid 2737 | . . . . . . 7 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
12 | 3, 7, 11 | ply1plusg 21501 | . . . . . 6 ⊢ (+g‘𝑃) = (+g‘𝑀) |
13 | 12 | a1i 11 | . . . . 5 ⊢ (⊤ → (+g‘𝑃) = (+g‘𝑀)) |
14 | 13 | oveqdr 7369 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(+g‘𝑃)𝑦) = (𝑥(+g‘𝑀)𝑦)) |
15 | 2, 10, 14 | grpidpropd 18443 | . . 3 ⊢ (⊤ → (0g‘𝑃) = (0g‘𝑀)) |
16 | 15 | mptru 1548 | . 2 ⊢ (0g‘𝑃) = (0g‘𝑀) |
17 | 1, 16 | eqtri 2765 | 1 ⊢ 0 = (0g‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1541 ⊤wtru 1542 ∈ wcel 2106 ‘cfv 6483 (class class class)co 7341 1oc1o 8364 Basecbs 17009 +gcplusg 17059 0gc0g 17247 mPoly cmpl 21214 PwSer1cps1 21451 Poly1cpl1 21453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 df-dec 12543 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-ple 17079 df-0g 17249 df-psr 21217 df-mpl 21219 df-opsr 21221 df-psr1 21456 df-ply1 21458 |
This theorem is referenced by: coe1z 21539 ply1coe 21572 deg1z 25357 deg1nn0cl 25358 deg1ldg 25362 ply1nzb 25392 |
Copyright terms: Public domain | W3C validator |