| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhil0 | Structured version Visualization version GIF version | ||
| Description: The zero vector for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.) |
| Ref | Expression |
|---|---|
| hlhil0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hlhil0.l | ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) |
| hlhil0.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
| hlhil0.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hlhil0.z | ⊢ 0 = (0g‘𝐿) |
| Ref | Expression |
|---|---|
| hlhil0 | ⊢ (𝜑 → 0 = (0g‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlhil0.z | . 2 ⊢ 0 = (0g‘𝐿) | |
| 2 | eqidd 2732 | . . 3 ⊢ (𝜑 → (Base‘𝐿) = (Base‘𝐿)) | |
| 3 | hlhil0.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | hlhil0.u | . . . 4 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
| 5 | hlhil0.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 6 | hlhil0.l | . . . 4 ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) | |
| 7 | eqid 2731 | . . . 4 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 8 | 3, 4, 5, 6, 7 | hlhilbase 41975 | . . 3 ⊢ (𝜑 → (Base‘𝐿) = (Base‘𝑈)) |
| 9 | eqid 2731 | . . . . 5 ⊢ (+g‘𝐿) = (+g‘𝐿) | |
| 10 | 3, 4, 5, 6, 9 | hlhilplus 41976 | . . . 4 ⊢ (𝜑 → (+g‘𝐿) = (+g‘𝑈)) |
| 11 | 10 | oveqdr 7369 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐿) ∧ 𝑦 ∈ (Base‘𝐿))) → (𝑥(+g‘𝐿)𝑦) = (𝑥(+g‘𝑈)𝑦)) |
| 12 | 2, 8, 11 | grpidpropd 18565 | . 2 ⊢ (𝜑 → (0g‘𝐿) = (0g‘𝑈)) |
| 13 | 1, 12 | eqtrid 2778 | 1 ⊢ (𝜑 → 0 = (0g‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 Basecbs 17115 +gcplusg 17156 0gc0g 17338 HLchlt 39389 LHypclh 40023 DVecHcdvh 41117 HLHilchlh 41971 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-struct 17053 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-sca 17172 df-vsca 17173 df-ip 17174 df-0g 17340 df-hlhil 41972 |
| This theorem is referenced by: hlhilphllem 41998 |
| Copyright terms: Public domain | W3C validator |