Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opsr0 | Structured version Visualization version GIF version |
Description: Zero in the ordered power series ring. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
opsr0.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
opsr0.o | ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) |
opsr0.t | ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) |
Ref | Expression |
---|---|
opsr0 | ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2738 | . 2 ⊢ (𝜑 → (Base‘𝑆) = (Base‘𝑆)) | |
2 | opsr0.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
3 | opsr0.o | . . 3 ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) | |
4 | opsr0.t | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) | |
5 | 2, 3, 4 | opsrbas 21324 | . 2 ⊢ (𝜑 → (Base‘𝑆) = (Base‘𝑂)) |
6 | 2, 3, 4 | opsrplusg 21326 | . . 3 ⊢ (𝜑 → (+g‘𝑆) = (+g‘𝑂)) |
7 | 6 | oveqdr 7343 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥(+g‘𝑆)𝑦) = (𝑥(+g‘𝑂)𝑦)) |
8 | 1, 5, 7 | grpidpropd 18416 | 1 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ⊆ wss 3897 × cxp 5605 ‘cfv 6465 (class class class)co 7315 Basecbs 16982 +gcplusg 17032 0gc0g 17220 mPwSer cmps 21179 ordPwSer copws 21183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-nn 12047 df-2 12109 df-3 12110 df-4 12111 df-5 12112 df-6 12113 df-7 12114 df-8 12115 df-9 12116 df-dec 12511 df-sets 16935 df-slot 16953 df-ndx 16965 df-base 16983 df-plusg 17045 df-ple 17052 df-0g 17222 df-psr 21184 df-opsr 21188 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |