![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opsr0 | Structured version Visualization version GIF version |
Description: Zero in the ordered power series ring. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
opsr0.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
opsr0.o | ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) |
opsr0.t | ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) |
Ref | Expression |
---|---|
opsr0 | ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2733 | . 2 ⊢ (𝜑 → (Base‘𝑆) = (Base‘𝑆)) | |
2 | opsr0.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
3 | opsr0.o | . . 3 ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) | |
4 | opsr0.t | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) | |
5 | 2, 3, 4 | opsrbas 21597 | . 2 ⊢ (𝜑 → (Base‘𝑆) = (Base‘𝑂)) |
6 | 2, 3, 4 | opsrplusg 21599 | . . 3 ⊢ (𝜑 → (+g‘𝑆) = (+g‘𝑂)) |
7 | 6 | oveqdr 7433 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥(+g‘𝑆)𝑦) = (𝑥(+g‘𝑂)𝑦)) |
8 | 1, 5, 7 | grpidpropd 18577 | 1 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⊆ wss 3947 × cxp 5673 ‘cfv 6540 (class class class)co 7405 Basecbs 17140 +gcplusg 17193 0gc0g 17381 mPwSer cmps 21448 ordPwSer copws 21452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-dec 12674 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-ple 17213 df-0g 17383 df-psr 21453 df-opsr 21457 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |