![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdegpropd | Structured version Visualization version GIF version |
Description: Property deduction for polynomial degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
Ref | Expression |
---|---|
mdegpropd.b1 | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
mdegpropd.b2 | ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) |
mdegpropd.p | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) |
Ref | Expression |
---|---|
mdegpropd | ⊢ (𝜑 → (𝐼 mDeg 𝑅) = (𝐼 mDeg 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdegpropd.b1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
2 | mdegpropd.b2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) | |
3 | mdegpropd.p | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) | |
4 | 1, 2, 3 | mplbaspropd 22259 | . . 3 ⊢ (𝜑 → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) |
5 | 1, 2, 3 | grpidpropd 18700 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑅) = (0g‘𝑆)) |
6 | 5 | oveq2d 7464 | . . . . 5 ⊢ (𝜑 → (𝑐 supp (0g‘𝑅)) = (𝑐 supp (0g‘𝑆))) |
7 | 6 | imaeq2d 6089 | . . . 4 ⊢ (𝜑 → ((𝑏 ∈ {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g‘𝑅))) = ((𝑏 ∈ {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g‘𝑆)))) |
8 | 7 | supeq1d 9515 | . . 3 ⊢ (𝜑 → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g‘𝑅))), ℝ*, < ) = sup(((𝑏 ∈ {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g‘𝑆))), ℝ*, < )) |
9 | 4, 8 | mpteq12dv 5257 | . 2 ⊢ (𝜑 → (𝑐 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ sup(((𝑏 ∈ {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g‘𝑅))), ℝ*, < )) = (𝑐 ∈ (Base‘(𝐼 mPoly 𝑆)) ↦ sup(((𝑏 ∈ {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g‘𝑆))), ℝ*, < ))) |
10 | eqid 2740 | . . 3 ⊢ (𝐼 mDeg 𝑅) = (𝐼 mDeg 𝑅) | |
11 | eqid 2740 | . . 3 ⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) | |
12 | eqid 2740 | . . 3 ⊢ (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅)) | |
13 | eqid 2740 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
14 | eqid 2740 | . . 3 ⊢ {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} | |
15 | eqid 2740 | . . 3 ⊢ (𝑏 ∈ {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) = (𝑏 ∈ {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) | |
16 | 10, 11, 12, 13, 14, 15 | mdegfval 26121 | . 2 ⊢ (𝐼 mDeg 𝑅) = (𝑐 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ sup(((𝑏 ∈ {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g‘𝑅))), ℝ*, < )) |
17 | eqid 2740 | . . 3 ⊢ (𝐼 mDeg 𝑆) = (𝐼 mDeg 𝑆) | |
18 | eqid 2740 | . . 3 ⊢ (𝐼 mPoly 𝑆) = (𝐼 mPoly 𝑆) | |
19 | eqid 2740 | . . 3 ⊢ (Base‘(𝐼 mPoly 𝑆)) = (Base‘(𝐼 mPoly 𝑆)) | |
20 | eqid 2740 | . . 3 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
21 | 17, 18, 19, 20, 14, 15 | mdegfval 26121 | . 2 ⊢ (𝐼 mDeg 𝑆) = (𝑐 ∈ (Base‘(𝐼 mPoly 𝑆)) ↦ sup(((𝑏 ∈ {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g‘𝑆))), ℝ*, < )) |
22 | 9, 16, 21 | 3eqtr4g 2805 | 1 ⊢ (𝜑 → (𝐼 mDeg 𝑅) = (𝐼 mDeg 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 ↦ cmpt 5249 ◡ccnv 5699 “ cima 5703 ‘cfv 6573 (class class class)co 7448 supp csupp 8201 ↑m cmap 8884 Fincfn 9003 supcsup 9509 ℝ*cxr 11323 < clt 11324 ℕcn 12293 ℕ0cn0 12553 Basecbs 17258 +gcplusg 17311 0gc0g 17499 Σg cgsu 17500 ℂfldccnfld 21387 mPoly cmpl 21949 mDeg cmdg 26112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-tset 17330 df-0g 17501 df-psr 21952 df-mpl 21954 df-mdeg 26114 |
This theorem is referenced by: deg1propd 26145 |
Copyright terms: Public domain | W3C validator |