![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdegpropd | Structured version Visualization version GIF version |
Description: Property deduction for polynomial degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
Ref | Expression |
---|---|
mdegpropd.b1 | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
mdegpropd.b2 | ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) |
mdegpropd.p | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) |
Ref | Expression |
---|---|
mdegpropd | ⊢ (𝜑 → (𝐼 mDeg 𝑅) = (𝐼 mDeg 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdegpropd.b1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
2 | mdegpropd.b2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) | |
3 | mdegpropd.p | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) | |
4 | 1, 2, 3 | mplbaspropd 21758 | . . 3 ⊢ (𝜑 → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) |
5 | 1, 2, 3 | grpidpropd 18580 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑅) = (0g‘𝑆)) |
6 | 5 | oveq2d 7424 | . . . . 5 ⊢ (𝜑 → (𝑐 supp (0g‘𝑅)) = (𝑐 supp (0g‘𝑆))) |
7 | 6 | imaeq2d 6059 | . . . 4 ⊢ (𝜑 → ((𝑏 ∈ {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g‘𝑅))) = ((𝑏 ∈ {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g‘𝑆)))) |
8 | 7 | supeq1d 9440 | . . 3 ⊢ (𝜑 → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g‘𝑅))), ℝ*, < ) = sup(((𝑏 ∈ {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g‘𝑆))), ℝ*, < )) |
9 | 4, 8 | mpteq12dv 5239 | . 2 ⊢ (𝜑 → (𝑐 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ sup(((𝑏 ∈ {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g‘𝑅))), ℝ*, < )) = (𝑐 ∈ (Base‘(𝐼 mPoly 𝑆)) ↦ sup(((𝑏 ∈ {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g‘𝑆))), ℝ*, < ))) |
10 | eqid 2732 | . . 3 ⊢ (𝐼 mDeg 𝑅) = (𝐼 mDeg 𝑅) | |
11 | eqid 2732 | . . 3 ⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) | |
12 | eqid 2732 | . . 3 ⊢ (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅)) | |
13 | eqid 2732 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
14 | eqid 2732 | . . 3 ⊢ {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} | |
15 | eqid 2732 | . . 3 ⊢ (𝑏 ∈ {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) = (𝑏 ∈ {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) | |
16 | 10, 11, 12, 13, 14, 15 | mdegfval 25579 | . 2 ⊢ (𝐼 mDeg 𝑅) = (𝑐 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ sup(((𝑏 ∈ {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g‘𝑅))), ℝ*, < )) |
17 | eqid 2732 | . . 3 ⊢ (𝐼 mDeg 𝑆) = (𝐼 mDeg 𝑆) | |
18 | eqid 2732 | . . 3 ⊢ (𝐼 mPoly 𝑆) = (𝐼 mPoly 𝑆) | |
19 | eqid 2732 | . . 3 ⊢ (Base‘(𝐼 mPoly 𝑆)) = (Base‘(𝐼 mPoly 𝑆)) | |
20 | eqid 2732 | . . 3 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
21 | 17, 18, 19, 20, 14, 15 | mdegfval 25579 | . 2 ⊢ (𝐼 mDeg 𝑆) = (𝑐 ∈ (Base‘(𝐼 mPoly 𝑆)) ↦ sup(((𝑏 ∈ {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g‘𝑆))), ℝ*, < )) |
22 | 9, 16, 21 | 3eqtr4g 2797 | 1 ⊢ (𝜑 → (𝐼 mDeg 𝑅) = (𝐼 mDeg 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3432 ↦ cmpt 5231 ◡ccnv 5675 “ cima 5679 ‘cfv 6543 (class class class)co 7408 supp csupp 8145 ↑m cmap 8819 Fincfn 8938 supcsup 9434 ℝ*cxr 11246 < clt 11247 ℕcn 12211 ℕ0cn0 12471 Basecbs 17143 +gcplusg 17196 0gc0g 17384 Σg cgsu 17385 ℂfldccnfld 20943 mPoly cmpl 21458 mDeg cmdg 25567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-tset 17215 df-0g 17386 df-psr 21461 df-mpl 21463 df-mdeg 25569 |
This theorem is referenced by: deg1propd 25603 |
Copyright terms: Public domain | W3C validator |