MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat0 Structured version   Visualization version   GIF version

Theorem mat0 21547
Description: The matrix ring has the same zero as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Hypotheses
Ref Expression
matbas.a 𝐴 = (𝑁 Mat 𝑅)
matbas.g 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁))
Assertion
Ref Expression
mat0 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (0g𝐺) = (0g𝐴))

Proof of Theorem mat0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2740 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (Base‘𝐺) = (Base‘𝐺))
2 matbas.a . . 3 𝐴 = (𝑁 Mat 𝑅)
3 matbas.g . . 3 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁))
42, 3matbas 21541 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (Base‘𝐺) = (Base‘𝐴))
52, 3matplusg 21542 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (+g𝐺) = (+g𝐴))
65oveqdr 7296 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐴)𝑦))
71, 4, 6grpidpropd 18327 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (0g𝐺) = (0g𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109   × cxp 5586  cfv 6430  (class class class)co 7268  Fincfn 8707  Basecbs 16893  +gcplusg 16943  0gc0g 17131   freeLMod cfrlm 20934   Mat cmat 21535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-ot 4575  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-plusg 16956  df-mulr 16957  df-0g 17133  df-mat 21536
This theorem is referenced by:  mat0op  21549  matgsum  21567
  Copyright terms: Public domain W3C validator