Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhils0 | Structured version Visualization version GIF version |
Description: The scalar ring zero for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.) |
Ref | Expression |
---|---|
hlhilsbase.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hlhilsbase.l | ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) |
hlhilsbase.s | ⊢ 𝑆 = (Scalar‘𝐿) |
hlhilsbase.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
hlhilsbase.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hlhilsbase.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hlhils0.z | ⊢ 0 = (0g‘𝑆) |
Ref | Expression |
---|---|
hlhils0 | ⊢ (𝜑 → 0 = (0g‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhils0.z | . 2 ⊢ 0 = (0g‘𝑆) | |
2 | eqidd 2740 | . . 3 ⊢ (𝜑 → (Base‘𝑆) = (Base‘𝑆)) | |
3 | hlhilsbase.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | hlhilsbase.l | . . . 4 ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) | |
5 | hlhilsbase.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝐿) | |
6 | hlhilsbase.u | . . . 4 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
7 | hlhilsbase.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑈) | |
8 | hlhilsbase.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
9 | eqid 2739 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
10 | 3, 4, 5, 6, 7, 8, 9 | hlhilsbase2 39725 | . . 3 ⊢ (𝜑 → (Base‘𝑆) = (Base‘𝑅)) |
11 | eqid 2739 | . . . . 5 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
12 | 3, 4, 5, 6, 7, 8, 11 | hlhilsplus2 39726 | . . . 4 ⊢ (𝜑 → (+g‘𝑆) = (+g‘𝑅)) |
13 | 12 | oveqdr 7262 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥(+g‘𝑆)𝑦) = (𝑥(+g‘𝑅)𝑦)) |
14 | 2, 10, 13 | grpidpropd 18164 | . 2 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑅)) |
15 | 1, 14 | syl5eq 2792 | 1 ⊢ (𝜑 → 0 = (0g‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ‘cfv 6400 Basecbs 16790 +gcplusg 16832 Scalarcsca 16835 0gc0g 16974 HLchlt 37133 LHypclh 37767 DVecHcdvh 38861 HLHilchlh 39715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-cnex 10812 ax-resscn 10813 ax-1cn 10814 ax-icn 10815 ax-addcl 10816 ax-addrcl 10817 ax-mulcl 10818 ax-mulrcl 10819 ax-mulcom 10820 ax-addass 10821 ax-mulass 10822 ax-distr 10823 ax-i2m1 10824 ax-1ne0 10825 ax-1rid 10826 ax-rnegex 10827 ax-rrecex 10828 ax-cnre 10829 ax-pre-lttri 10830 ax-pre-lttrn 10831 ax-pre-ltadd 10832 ax-pre-mulgt0 10833 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3711 df-csb 3828 df-dif 3885 df-un 3887 df-in 3889 df-ss 3899 df-pss 3901 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-iun 4922 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-om 7666 df-1st 7782 df-2nd 7783 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-1o 8225 df-er 8414 df-en 8650 df-dom 8651 df-sdom 8652 df-fin 8653 df-pnf 10896 df-mnf 10897 df-xr 10898 df-ltxr 10899 df-le 10900 df-sub 11091 df-neg 11092 df-nn 11858 df-2 11920 df-3 11921 df-4 11922 df-5 11923 df-6 11924 df-7 11925 df-8 11926 df-n0 12118 df-z 12204 df-uz 12466 df-fz 13123 df-struct 16730 df-sets 16747 df-slot 16765 df-ndx 16775 df-base 16791 df-plusg 16845 df-starv 16847 df-sca 16848 df-vsca 16849 df-ip 16850 df-0g 16976 df-dvech 38862 df-hlhil 39716 |
This theorem is referenced by: hlhilocv 39740 hlhilphllem 39742 |
Copyright terms: Public domain | W3C validator |