MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubf Structured version   Visualization version   GIF version

Theorem grpsubf 19007
Description: Functionality of group subtraction. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
grpsubcl.b 𝐵 = (Base‘𝐺)
grpsubcl.m = (-g𝐺)
Assertion
Ref Expression
grpsubf (𝐺 ∈ Grp → :(𝐵 × 𝐵)⟶𝐵)

Proof of Theorem grpsubf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsubcl.b . . . . . . 7 𝐵 = (Base‘𝐺)
2 eqid 2736 . . . . . . 7 (invg𝐺) = (invg𝐺)
31, 2grpinvcl 18975 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
433adant2 1131 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
5 eqid 2736 . . . . . 6 (+g𝐺) = (+g𝐺)
61, 5grpcl 18929 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵 ∧ ((invg𝐺)‘𝑦) ∈ 𝐵) → (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ 𝐵)
74, 6syld3an3 1411 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ 𝐵)
873expb 1120 . . 3 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ 𝐵)
98ralrimivva 3188 . 2 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ 𝐵)
10 grpsubcl.m . . . 4 = (-g𝐺)
111, 5, 2, 10grpsubfval 18971 . . 3 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)((invg𝐺)‘𝑦)))
1211fmpo 8072 . 2 (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ 𝐵 :(𝐵 × 𝐵)⟶𝐵)
139, 12sylib 218 1 (𝐺 ∈ Grp → :(𝐵 × 𝐵)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3052   × cxp 5657  wf 6532  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  Grpcgrp 18921  invgcminusg 18922  -gcsg 18923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926
This theorem is referenced by:  grpsubcl  19008  cnfldsub  21365  distgp  24042  indistgp  24043  clssubg  24052  tgphaus  24060  qustgplem  24064  nrmmetd  24518  isngp2  24541  isngp3  24542  ngpds  24548  ngptgp  24580  tngnm  24595  tngngp2  24596  rrxds  25350
  Copyright terms: Public domain W3C validator