MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubf Structured version   Visualization version   GIF version

Theorem grpsubf 18654
Description: Functionality of group subtraction. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
grpsubcl.b 𝐵 = (Base‘𝐺)
grpsubcl.m = (-g𝐺)
Assertion
Ref Expression
grpsubf (𝐺 ∈ Grp → :(𝐵 × 𝐵)⟶𝐵)

Proof of Theorem grpsubf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsubcl.b . . . . . . 7 𝐵 = (Base‘𝐺)
2 eqid 2738 . . . . . . 7 (invg𝐺) = (invg𝐺)
31, 2grpinvcl 18627 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
433adant2 1130 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
5 eqid 2738 . . . . . 6 (+g𝐺) = (+g𝐺)
61, 5grpcl 18585 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵 ∧ ((invg𝐺)‘𝑦) ∈ 𝐵) → (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ 𝐵)
74, 6syld3an3 1408 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ 𝐵)
873expb 1119 . . 3 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ 𝐵)
98ralrimivva 3123 . 2 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ 𝐵)
10 grpsubcl.m . . . 4 = (-g𝐺)
111, 5, 2, 10grpsubfval 18623 . . 3 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)((invg𝐺)‘𝑦)))
1211fmpo 7908 . 2 (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ 𝐵 :(𝐵 × 𝐵)⟶𝐵)
139, 12sylib 217 1 (𝐺 ∈ Grp → :(𝐵 × 𝐵)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wral 3064   × cxp 5587  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Grpcgrp 18577  invgcminusg 18578  -gcsg 18579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582
This theorem is referenced by:  grpsubcl  18655  cnfldsub  20626  distgp  23250  indistgp  23251  clssubg  23260  tgphaus  23268  qustgplem  23272  nrmmetd  23730  isngp2  23753  isngp3  23754  ngpds  23760  ngptgp  23792  tngnm  23815  tngngp2  23816  rrxds  24557
  Copyright terms: Public domain W3C validator