Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpsubf | Structured version Visualization version GIF version |
Description: Functionality of group subtraction. (Contributed by Mario Carneiro, 9-Sep-2014.) |
Ref | Expression |
---|---|
grpsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubcl.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubf | ⊢ (𝐺 ∈ Grp → − :(𝐵 × 𝐵)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2758 | . . . . . . 7 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
3 | 1, 2 | grpinvcl 18223 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵) → ((invg‘𝐺)‘𝑦) ∈ 𝐵) |
4 | 3 | 3adant2 1128 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((invg‘𝐺)‘𝑦) ∈ 𝐵) |
5 | eqid 2758 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
6 | 1, 5 | grpcl 18182 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑦) ∈ 𝐵) → (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵) |
7 | 4, 6 | syld3an3 1406 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵) |
8 | 7 | 3expb 1117 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵) |
9 | 8 | ralrimivva 3120 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵) |
10 | grpsubcl.m | . . . 4 ⊢ − = (-g‘𝐺) | |
11 | 1, 5, 2, 10 | grpsubfval 18219 | . . 3 ⊢ − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦))) |
12 | 11 | fmpo 7775 | . 2 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵 ↔ − :(𝐵 × 𝐵)⟶𝐵) |
13 | 9, 12 | sylib 221 | 1 ⊢ (𝐺 ∈ Grp → − :(𝐵 × 𝐵)⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ∀wral 3070 × cxp 5525 ⟶wf 6335 ‘cfv 6339 (class class class)co 7155 Basecbs 16546 +gcplusg 16628 Grpcgrp 18174 invgcminusg 18175 -gcsg 18176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-1st 7698 df-2nd 7699 df-0g 16778 df-mgm 17923 df-sgrp 17972 df-mnd 17983 df-grp 18177 df-minusg 18178 df-sbg 18179 |
This theorem is referenced by: grpsubcl 18251 cnfldsub 20199 distgp 22804 indistgp 22805 clssubg 22814 tgphaus 22822 qustgplem 22826 nrmmetd 23281 isngp2 23304 isngp3 23305 ngpds 23311 ngptgp 23343 tngnm 23358 tngngp2 23359 rrxds 24098 |
Copyright terms: Public domain | W3C validator |