| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpsubf | Structured version Visualization version GIF version | ||
| Description: Functionality of group subtraction. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| Ref | Expression |
|---|---|
| grpsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubcl.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubf | ⊢ (𝐺 ∈ Grp → − :(𝐵 × 𝐵)⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2729 | . . . . . . 7 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 3 | 1, 2 | grpinvcl 18919 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵) → ((invg‘𝐺)‘𝑦) ∈ 𝐵) |
| 4 | 3 | 3adant2 1131 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((invg‘𝐺)‘𝑦) ∈ 𝐵) |
| 5 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 6 | 1, 5 | grpcl 18873 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑦) ∈ 𝐵) → (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵) |
| 7 | 4, 6 | syld3an3 1411 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵) |
| 8 | 7 | 3expb 1120 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵) |
| 9 | 8 | ralrimivva 3180 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵) |
| 10 | grpsubcl.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 11 | 1, 5, 2, 10 | grpsubfval 18915 | . . 3 ⊢ − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦))) |
| 12 | 11 | fmpo 8047 | . 2 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵 ↔ − :(𝐵 × 𝐵)⟶𝐵) |
| 13 | 9, 12 | sylib 218 | 1 ⊢ (𝐺 ∈ Grp → − :(𝐵 × 𝐵)⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 × cxp 5636 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 Grpcgrp 18865 invgcminusg 18866 -gcsg 18867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 |
| This theorem is referenced by: grpsubcl 18952 cnfldsub 21309 distgp 23986 indistgp 23987 clssubg 23996 tgphaus 24004 qustgplem 24008 nrmmetd 24462 isngp2 24485 isngp3 24486 ngpds 24492 ngptgp 24524 tngnm 24539 tngngp2 24540 rrxds 25293 |
| Copyright terms: Public domain | W3C validator |