![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpsubf | Structured version Visualization version GIF version |
Description: Functionality of group subtraction. (Contributed by Mario Carneiro, 9-Sep-2014.) |
Ref | Expression |
---|---|
grpsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubcl.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubf | ⊢ (𝐺 ∈ Grp → − :(𝐵 × 𝐵)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2726 | . . . . . . 7 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
3 | 1, 2 | grpinvcl 18975 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵) → ((invg‘𝐺)‘𝑦) ∈ 𝐵) |
4 | 3 | 3adant2 1128 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((invg‘𝐺)‘𝑦) ∈ 𝐵) |
5 | eqid 2726 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
6 | 1, 5 | grpcl 18929 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑦) ∈ 𝐵) → (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵) |
7 | 4, 6 | syld3an3 1406 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵) |
8 | 7 | 3expb 1117 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵) |
9 | 8 | ralrimivva 3191 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵) |
10 | grpsubcl.m | . . . 4 ⊢ − = (-g‘𝐺) | |
11 | 1, 5, 2, 10 | grpsubfval 18971 | . . 3 ⊢ − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦))) |
12 | 11 | fmpo 8072 | . 2 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵 ↔ − :(𝐵 × 𝐵)⟶𝐵) |
13 | 9, 12 | sylib 217 | 1 ⊢ (𝐺 ∈ Grp → − :(𝐵 × 𝐵)⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∀wral 3051 × cxp 5671 ⟶wf 6540 ‘cfv 6544 (class class class)co 7414 Basecbs 17206 +gcplusg 17259 Grpcgrp 18921 invgcminusg 18922 -gcsg 18923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7993 df-2nd 7994 df-0g 17449 df-mgm 18626 df-sgrp 18705 df-mnd 18721 df-grp 18924 df-minusg 18925 df-sbg 18926 |
This theorem is referenced by: grpsubcl 19008 cnfldsub 21383 distgp 24089 indistgp 24090 clssubg 24099 tgphaus 24107 qustgplem 24111 nrmmetd 24569 isngp2 24592 isngp3 24593 ngpds 24599 ngptgp 24631 tngnm 24654 tngngp2 24655 rrxds 25407 |
Copyright terms: Public domain | W3C validator |