MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubf Structured version   Visualization version   GIF version

Theorem grpsubf 19007
Description: Functionality of group subtraction. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
grpsubcl.b 𝐵 = (Base‘𝐺)
grpsubcl.m = (-g𝐺)
Assertion
Ref Expression
grpsubf (𝐺 ∈ Grp → :(𝐵 × 𝐵)⟶𝐵)

Proof of Theorem grpsubf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsubcl.b . . . . . . 7 𝐵 = (Base‘𝐺)
2 eqid 2726 . . . . . . 7 (invg𝐺) = (invg𝐺)
31, 2grpinvcl 18975 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
433adant2 1128 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
5 eqid 2726 . . . . . 6 (+g𝐺) = (+g𝐺)
61, 5grpcl 18929 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵 ∧ ((invg𝐺)‘𝑦) ∈ 𝐵) → (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ 𝐵)
74, 6syld3an3 1406 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ 𝐵)
873expb 1117 . . 3 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ 𝐵)
98ralrimivva 3191 . 2 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ 𝐵)
10 grpsubcl.m . . . 4 = (-g𝐺)
111, 5, 2, 10grpsubfval 18971 . . 3 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)((invg𝐺)‘𝑦)))
1211fmpo 8072 . 2 (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ 𝐵 :(𝐵 × 𝐵)⟶𝐵)
139, 12sylib 217 1 (𝐺 ∈ Grp → :(𝐵 × 𝐵)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wral 3051   × cxp 5671  wf 6540  cfv 6544  (class class class)co 7414  Basecbs 17206  +gcplusg 17259  Grpcgrp 18921  invgcminusg 18922  -gcsg 18923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-iun 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7993  df-2nd 7994  df-0g 17449  df-mgm 18626  df-sgrp 18705  df-mnd 18721  df-grp 18924  df-minusg 18925  df-sbg 18926
This theorem is referenced by:  grpsubcl  19008  cnfldsub  21383  distgp  24089  indistgp  24090  clssubg  24099  tgphaus  24107  qustgplem  24111  nrmmetd  24569  isngp2  24592  isngp3  24593  ngpds  24599  ngptgp  24631  tngnm  24654  tngngp2  24655  rrxds  25407
  Copyright terms: Public domain W3C validator